Identification of Putative Biomarkers Specific to Foodborne Pathogens Using Metabolomics

  • Snehal R. Jadhav
  • Rohan M. Shah
  • Avinash V. Karpe
  • David J. Beale
  • Konstantinos A. Kouremenos
  • Enzo A. PalomboEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1918)


Metabolomics is one of the more recently developed “omics” that measures low molecular weight (typically < 1500 Da) compounds in biological samples. Metabolomics has been widely explored in environmental, clinical, and industrial biotechnology applications. However, its application to the area of food safety has been limited but preliminary work has demonstrated its value. This chapter describes an untargeted (nontargeted) metabolomics workflow using gas chromatography coupled to mass spectrometry (GC-MS) for characterizing three globally important foodborne pathogens, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica, from selective enrichment liquid culture media. The workflow involves a detailed description of food spiking experiments followed by procedures for extraction of polar metabolites from media, analyzing the extracts using GC-MS and, finally, chemometric data analysis using the software “SIMCA” to identify potential pathogen-specific biomarkers.

Key words

Metabolomic profiling Gas chromatography–mass spectrometry (GC-MS) Principal component analysis (PCA) Partial Least Square-Discriminant Analysis (PLS-DA) Volcano plots SIMCA MetaboAnalyst Foodborne pathogens Food safety 



The authors would like to thank the Australian Meat Processor Corporation (AMPC) for funding this research under the Research, Development, and Extension program 2014–2015.


  1. 1.
    Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. In: Town C (ed) Functional genomics. Springer Netherlands, Dordrecht, pp 155–171. Scholar
  2. 2.
    Han X, Aslanian A, Yates JR III (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12(5):483–490CrossRefGoogle Scholar
  3. 3.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57CrossRefGoogle Scholar
  4. 4.
    Spratlin JL, Serkova NJ, Eckhardt SG (2009) Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 15(2):431–440CrossRefGoogle Scholar
  5. 5.
    Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: a critical review and future perspectives. Metabolomics 5(1):3CrossRefGoogle Scholar
  6. 6.
    Hall RD, de Maagd RA (2014) Plant metabolomics is not ripe for environmental risk assessment. Trends Biotechnol 32(8):391–392CrossRefGoogle Scholar
  7. 7.
    Lima MRM, Diaz SO, Lamego I, Grusak MA, Vasconcelos MW, Gil AM (2014) Nuclear magnetic resonance metabolomics of iron deficiency in soybean leaves. J Proteome Res 13(6):3075–3087. Scholar
  8. 8.
    Cisek K, Krochmal M, Klein J, Mischak H (2016) The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrol Dial Transplant 31(12):2003–2011. Scholar
  9. 9.
    Kim HK, Wilson EG, Choi YH, Verpoorte R (2010) Metabolomics: a tool for anticancer lead-finding from natural products. Planta Med 76(11):1094–1102. Scholar
  10. 10.
    Hines A, Staff FJ, Widdows J, Compton RM, Falciani F, Viant MR (2010) Discovery of metabolic signatures for predicting whole organism toxicology. Toxicol Sci 115(2):369–378. Scholar
  11. 11.
    Kouremenos KA, Johansson M, Marriott PJ (2012) Advances in gas chromatographic methods for the identification of biomarkers in cancer. J Cancer 3(1):404–420. Scholar
  12. 12.
    Beale DJ, Dunn MS, Marney D (2010) Application of GC–MS metabolic profiling to ‘blue-green water’ from microbial influenced corrosion in copper pipes. Corros Sci 52(9):3140–3145. Scholar
  13. 13.
    Beale DJ, Marney D, Marlow DR, Morrison PD, Dunn MS, Key C, Palombo EA (2013) Metabolomic analysis of cryptosporidium parvum oocysts in water: a proof of concept demonstration. Environ Pollut 174(Supplement C):201–203. Scholar
  14. 14.
    Beale DJ, Morrison PD, Palombo EA (2014) Detection of Listeria in milk using non-targeted metabolic profiling of Listeria monocytogenes: a proof-of-concept application. Food Control 42:343–346CrossRefGoogle Scholar
  15. 15.
    Heinzmann SS, Brown IJ, Chan Q, Bictash M, Dumas M-E, Kochhar S, Stamler J, Holmes E, Elliott P, Nicholson JK (2010) Metabolic profiling strategy for discovery of nutritional biomarkers: proline betaine as a marker of citrus consumption. Am J Clin Nutr 92(2):436–443. Scholar
  16. 16.
    Savolainen O, Lind MV, Bergström G, Fagerberg B, Sandberg AS, Ross A (2017) Biomarkers of food intake and nutrient status are associated with glucose tolerance status and development of type 2 diabetes in older Swedish women. Am J Clin Nutr 106(5):1302–1310. Scholar
  17. 17.
    Pinu FR (2015) Metabolomics—the new frontier in food safety and quality research. Food Res Int 72(Supplement C):80–81. Scholar
  18. 18.
    Pinu FR (2016) Early detection of food pathogens and food spoilage microorganisms: application of metabolomics. Trends Food Sci Technol 54(Supplement C):213–215. Scholar
  19. 19.
    Cevallos-Cevallos JM, Danyluk MD, Reyes-De-Corcuera JI (2011) GC-MS based metabolomics for rapid simultaneous detection of Escherichia coli O157: H7, Salmonella Typhimurium, Salmonella Muenchen, and Salmonella Hartford in ground beef and chicken. J Food Sci 76(4):M238–M246CrossRefGoogle Scholar
  20. 20.
    Li H, Zhu J (2017) Targeted metabolic profiling rapidly differentiates Escherichia coli and Staphylococcus aureus at species and strain level. Rapid Commun Mass Spectrom 31(19):1669–1676. Scholar
  21. 21.
    Babushok VI, Linstrom PJ, Reed J, Zenkevich I, Brown RL, Mallard WG, Stein SE (2007) Development of a database of gas chromatographic retention properties of organic compounds. J Chromatogr A 1157(1–2):414–421CrossRefGoogle Scholar
  22. 22.
    Oberacher HM (2011) Wiley registry of tandem mass spectral data. John WileyGoogle Scholar
  23. 23.
    Hummel J, Strehmel N, Bölling C, Schmidt S, Walther D, Kopka J (2013) Mass spectral search and analysis using the golm metabolome database. In: The handbook of plant metabolomics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 321–343CrossRefGoogle Scholar
  24. 24.
    Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81(24):10038–10048CrossRefGoogle Scholar
  25. 25.
    Sumner L, Amberg A, Barrett D, Beale M, Beger R, Daykin C, Fan TM, Fiehn O, Goodacre R, Griffin J, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane A, Lindon J, Marriott P, Nicholls A, Reily M, Thaden J, Viant M (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3(3):211–221. Scholar
  26. 26.
    Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40(W1):W127–W133CrossRefGoogle Scholar
  27. 27.
    Villas-Bôas SG, Roessner U, Hansen MA, Smedsgaard J, Nielsen J (2006) Sampling and sample preparation. Metabolome analysis: an introduction. Wiley, pp 39–82Google Scholar
  28. 28.
    Jadhav S, Sevior D, Bhave M, Palombo EA (2014) Detection of Listeria monocytogenes from selective enrichment broth using MALDI–TOF mass spectrometry. J Proteome 97:100–106CrossRefGoogle Scholar
  29. 29.
    Ng JSY, Ryan U, Trengove RD, Maker GL (2012) Development of an untargeted metabolomics method for the analysis of human faecal samples using cryptosporidium-infected samples. Mol Biochem Parasitol 185(2):145–150CrossRefGoogle Scholar
  30. 30.
    Karpe AV, Beale DJ, Harding IH, Palombo EA (2015) Optimization of degradation of winery-derived biomass waste by ascomycetes. J Chem Technol Biotechnol 90(10):1793–1801. Scholar
  31. 31.
    Lu W, Su X, Klein MS, Lewis IA, Fiehn O, Rabinowitz JD (2017) Metabolite measurement: pitfalls to avoid and practices to follow. Annu Rev. Biochem 86:277–304CrossRefGoogle Scholar
  32. 32.
    Abbiss H, Rawlinson C, Maker GL, Trengove R (2015) Assessment of automated trimethylsilyl derivatization protocols for GC–MS-based untargeted metabolomic analysis of urine. Metabolomics 11(6):1908–1921CrossRefGoogle Scholar
  33. 33.
    Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58(2):109–130CrossRefGoogle Scholar
  34. 34.
    Azizan KA, Baharum SN, Ressom HW, Noor NM (2012) GC-MS analysis and PLS-DA validation of the trimethyl silyl-derivatization techniques. Am J Appl Sci 9(7):1124–1136CrossRefGoogle Scholar
  35. 35.
    Karpe AV, Beale DJ, Morrison PD, Harding IH, Palombo EA, Boden R (2015) Untargeted metabolic profiling of Vitis vinifera during fungal degradation. FEMS Microbiol Lett 362(10).
  36. 36.
    Yi L, Shi S, Yi Z, He R, Lu H, Liang Y (2014) MeOx-TMS derivatization for GC-MS metabolic profiling of urine and application in the discrimination between normal C57BL/6 J and type 2 diabetic KK-Ay mice. Anal Methods 6(12):4380–4387CrossRefGoogle Scholar
  37. 37.
    Fiehn O (2016) Metabolomics by gas chromatography–mass spectrometry: combined targeted and untargeted profiling. Curr Protoc Mol Biol 114:30.34.31–30.34.32Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Snehal R. Jadhav
    • 1
    • 2
  • Rohan M. Shah
    • 1
  • Avinash V. Karpe
    • 1
    • 3
  • David J. Beale
    • 3
  • Konstantinos A. Kouremenos
    • 4
  • Enzo A. Palombo
    • 1
    Email author
  1. 1.Department of Chemistry and Biotechnology, School of ScienceSwinburne University of TechnologyMelbourneAustralia
  2. 2.Centre for Advanced Sensory Science, School of Exercise and Nutrition SciencesDeakin UniversityMelbourneAustralia
  3. 3.Land and WaterCommonwealth Scientific and Industrial Research Organisation (CSIRO)BrisbaneAustralia
  4. 4.Metabolomics Australia, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneAustralia

Personalised recommendations