2D and 3D In Vitro Co-Culture for Cancer and Bone Cell Interaction Studies

  • Silvia MarinoEmail author
  • Ryan T. Bishop
  • Daniëlle de Ridder
  • Jesus Delgado-Calle
  • Michaela R. Reagan
Part of the Methods in Molecular Biology book series (MIMB, volume 1914)


Co-culture assays are used to study the mutual interaction between cells in vitro. This chapter describes 2D and 3D co-culture systems used to study cell-cell signaling crosstalk between cancer cells and bone marrow adipocytes, osteoblasts, osteoclasts, and osteocytes. The chapter provides a step-by-step guide to the most commonly used cell culture techniques, functional assays, and gene expression.

Key words

In vitro co-culture Osteoclasts Osteoblasts Osteocytes Cancer cells 



We gratefully acknowledge Dr. Aymen I Idris for donating images and his valuable advice and support. S.M. work is supported by the Multiple Myeloma Research Foundation. J.D.C. work is supported by the American Society of Hematology Scholar Award and the International Myeloma Foundation Brian D. Novis Junior Research Grant. M.R.R. the NIH/NIGMS U54GM115516, P30GM106391, P20GM121301, and P30GM103392; the NIH/NIDDK (R24 DK092759-01); the NIH/NIAMS P30AR066261; the American Cancer Society (Research Grant #IRG-16-191-33); and start-up funds from the Maine Medical Center Research Institute.


  1. 1.
    Suva LJ et al (2011) Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol 7(4):208–218PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Waning DL, Guise TA (2014) Molecular mechanisms of bone metastasis and associated muscle weakness. Clin Cancer Res 20(12):3071–3077PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593PubMedCrossRefGoogle Scholar
  4. 4.
    Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350(16):1655–1664PubMedCrossRefGoogle Scholar
  5. 5.
    Croucher PI, McDonald MM, Martin TJ (2016) Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer 16(6):373–386PubMedCrossRefGoogle Scholar
  6. 6.
    Kaemmerer E et al (2017) Innovative in vitro models for breast cancer drug discovery. Drug Discov Today Dis Model 21:11–16CrossRefGoogle Scholar
  7. 7.
    Arrigoni C et al (2014) Direct but not indirect co-culture with osteogenically differentiated human bone marrow stromal cells increases RANKL/OPG ratio in human breast cancer cells generating bone metastases. Mol Cancer 13:238PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Arrigoni C et al (2016) In vitro co-culture models of breast cancer metastatic progression towards bone. Int J Mol Sci 17(9)PubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sebastian A et al (2015) Cancer-osteoblast interaction reduces sost expression in osteoblasts and up-regulates lncRNA MALAT1 in prostate cancer. Microarrays (Basel) 4(4):503–519CrossRefGoogle Scholar
  10. 10.
    Chen Y et al (2011) Regulation of breast cancer-induced bone lesions by beta-catenin protein signaling. J Biol Chem 286(49):42575–42584PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Zheng Y et al (2014) Direct crosstalk between cancer and osteoblast lineage cells fuels metastatic growth in bone via auto-amplification of IL-6 and RANKL signaling pathways. J Bone Miner Res 29(9):1938–1949PubMedCrossRefGoogle Scholar
  12. 12.
    Nicolin V et al (2008) Breast adenocarcinoma MCF-7 cell line induces spontaneous osteoclastogenesis via a RANK-ligand-dependent pathway. Acta Histochem 110(5):388–396PubMedCrossRefGoogle Scholar
  13. 13.
    Bersini S et al (2014) A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35(8):2454–2461PubMedCrossRefGoogle Scholar
  14. 14.
    Di Maggio N et al (2011) Toward modeling the bone marrow niche using scaffold-based 3D culture systems. Biomaterials 32(2):321–329PubMedCrossRefGoogle Scholar
  15. 15.
    Wang R et al (2005) Three-dimensional co-culture models to study prostate cancer growth, progression, and metastasis to bone. Semin Cancer Biol 15(5):353–364PubMedCrossRefGoogle Scholar
  16. 16.
    Orriss IR, Taylor SE, Arnett TR (2012) Rat osteoblast cultures. Methods Mol Biol 816:31–41PubMedCrossRefGoogle Scholar
  17. 17.
    Taylor SE, Shah M, Orriss IR (2014) Generation of rodent and human osteoblasts. Bonekey Rep 3:585PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bakker AD, Klein-Nulend J (2012) Osteoblast isolation from murine calvaria and long bones. Methods Mol Biol 816:19–29PubMedCrossRefGoogle Scholar
  19. 19.
    Czekanska EM et al (2012) In search of an osteoblast cell model for in vitro research. Eur Cell Mater 24:1–17PubMedCrossRefGoogle Scholar
  20. 20.
    Czekanska EM et al (2014) A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing. J Biomed Mater Res A 102(8):2636–2643PubMedCrossRefGoogle Scholar
  21. 21.
    Costa-Rodrigues J, Fernandes A, Fernandes MH (2011) Reciprocal osteoblastic and osteoclastic modulation in co-cultured MG63 osteosarcoma cells and human osteoclast precursors. J Cell Biochem 112(12):3704–3713PubMedCrossRefGoogle Scholar
  22. 22.
    Henriksen K et al (2012) Generation of human osteoclasts from peripheral blood. Methods Mol Biol 816:159–175PubMedCrossRefGoogle Scholar
  23. 23.
    Marino S et al (2014) Generation and culture of osteoclasts. Bonekey Rep 3:570PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Abbott RD et al (2016) The use of silk as a scaffold for mature, sustainable unilocular adipose 3D tissue engineered systems. Adv Healthc Mater 5(13):1667–1677PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Moreau JE et al (2007) Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Res 67(21):10304–10308PubMedCrossRefGoogle Scholar
  26. 26.
    Kapoor S, Kundu SC (2016) Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater 31:17–32PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang X, Reagan MR, Kaplan DL (2009) Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 61(12):988–1006PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Pallotta I et al (2011) Three-dimensional system for the in vitro study of megakaryocytes and functional platelet production using silk-based vascular tubes. Tissue Eng Part C Methods 17(12):1223–1232PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Numata K et al (2011) Spider silk-based gene carriers for tumor cell-specific delivery. Bioconjug Chem 22(8):1605–1610PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Mandal BB, Kundu SC (2009) Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Acta Biomater 5(7):2579–2590PubMedCrossRefGoogle Scholar
  31. 31.
    Bellas E et al (2012) In vitro 3D full-thickness skin-equivalent tissue model using silk and collagen biomaterials. Macromol Biosci 12(12):1627–1636PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bellas E, Marra KG, Kaplan DL (2013) Sustainable three-dimensional tissue model of human adipose tissue. Tissue Eng Part C Methods 19(10):745–754PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sun L, Reagan MR, Kaplan DL (2010) Role of Cartilage Forming Cells in Regenerative Medicine for Cartilage Repair. Orthop Res Rev 2010(2):85–94PubMedPubMedCentralGoogle Scholar
  34. 34.
    Sundelacruz S, Kaplan DL (2009) Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol 20(6):646–655PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kim HJ et al (2007) Bone regeneration on macroporous aqueous-derived silk 3-D scaffolds. Macromol Biosci 7(5):643–655PubMedCrossRefGoogle Scholar
  36. 36.
    Mandal BB et al (2012) High-strength silk protein scaffolds for bone repair. Proc Natl Acad Sci U S A 109(20):7699–7704PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Reagan MR et al (2014) Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model. Blood 124(22):3250–3259PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Correia C et al (2012) Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater 8(7):2483–2492PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Goldstein RH et al (2010) Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis. Cancer Res 70(24):10044–10050PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kwon H et al (2010) Development of an in vitro model to study the impact of BMP-2 on metastasis to bone. J Tissue Eng Regen Med 4(8):590–599PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Momen-Heravi F et al (2013) Current methods for the isolation of extracellular vesicles. Biol Chem 394(10):1253–1262PubMedCrossRefGoogle Scholar
  42. 42.
    Orriss IR et al (2014) Optimisation of the differing conditions required for bone formation in vitro by primary osteoblasts from mice and rats. Int J Mol Med 34(5):1201–1208PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Faust J et al (1999) Osteoclast markers accumulate on cells developing from human peripheral blood mononuclear precursors. J Cell Biochem 72(1):67–80PubMedCrossRefGoogle Scholar
  44. 44.
    Daigneault M et al (2010) The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 5(1):e8668PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Bodine PV, Vernon SK, Komm BS (1996) Establishment and hormonal regulation of a conditionally transformed preosteocytic cell line from adult human bone. Endocrinology 137(11):4592–4604PubMedCrossRefGoogle Scholar
  46. 46.
    Shah KM et al (2016) Osteocyte isolation and culture methods. Bonekey Rep 5:838PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Delgado-Calle J et al (2016) Bidirectional notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma. Cancer Res 76(5):1089–1100PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Augst A et al (2008) Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors. J R Soc Interface 5(25):929–939PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wang Y et al (2006) Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27(36):6064–6082PubMedCrossRefGoogle Scholar
  50. 50.
    Park SH et al (2010) Relationships between degradability of silk scaffolds and osteogenesis. Biomaterials 31(24):6162–6172PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kim HJ et al (2008) Bone tissue engineering with premineralized silk scaffolds. Bone 42(6):1226–1234PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Silvia Marino
    • 1
    Email author
  • Ryan T. Bishop
    • 2
  • Daniëlle de Ridder
    • 2
  • Jesus Delgado-Calle
    • 3
  • Michaela R. Reagan
    • 4
  1. 1.Division Hematology Oncology, Department of MedicineIndiana University School of MedicineIndianapolisUSA
  2. 2.Department of Oncology and Metabolism, Medical SchoolUniversity of SheffieldSheffieldUK
  3. 3.Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisUSA
  4. 4.Center for Molecular MedicineMaine Medical Centre Research InstituteScarboroughUSA

Personalised recommendations