Advertisement

Techniques for the Study of Apoptosis in Bone

  • Val Mann
  • Brendon Noble
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1914)

Abstract

Osteocyte apoptosis has been associated with a number of clinical conditions in bone and with the targeted turnover of specific skeletal areas. There has been great interest in the identification of the mechanisms by which apoptosis is regulated in bone and in the biological role that this process plays in bone metabolism and associated bone disease or loss of structural integrity. Here we describe several methods for the detection of apoptosis in bone sections and in bone cell cultures.

Key words

Apoptosis Osteocyte Bone Caspase Nick translation 

References

  1. 1.
    Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306CrossRefGoogle Scholar
  2. 2.
    Stevens HY, Reeve J, Noble BS (2000) Bcl-2, tissue transglutaminase and p53 protein expression in the apoptotic cascade in ribs of premature infants. J Anat 196:181–191CrossRefGoogle Scholar
  3. 3.
    Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC (1999) Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest 104:439–446CrossRefGoogle Scholar
  4. 4.
    Kameda T, Ishikawa H, Tsutsui T (1995) Detection and characterization of apoptosis in osteoclasts in vitro. Biochem Biophys Res Commun 207:753–760CrossRefGoogle Scholar
  5. 5.
    Verborgt O, Gibson GJ, Schaffler MB (2000) Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 15:60–67CrossRefGoogle Scholar
  6. 6.
    Kogianni G, Mann V, Noble BS (2008) Apoptotic bodies convey activity capable of initiating osteoclastogenesis and localized bone destruction. J Bone Miner Res 23:915–927CrossRefGoogle Scholar
  7. 7.
    Noble BS, Stevens H, Loveridge N, Reeve J (1997) Identification of apoptotic changes in osteocytes in normal and pathological human bone. Bone 20:273–282CrossRefGoogle Scholar
  8. 8.
    Wong SYP, Evans RA, Needs C, Dunstan C, Hills E, Garvan J (1987) The pathogenesis of osteoarthritis of the hip: evidence for primary osteocyte death. Clin Orthop Relat Res 214:305–312Google Scholar
  9. 9.
    Canalis E, Mazziotii G, Giustina A, Bilezikian J (2007) Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 18:1319–1328CrossRefGoogle Scholar
  10. 10.
    Davis HM, Aref MW, Aguilar-Perez A, Pacheco-Costa R, Allen K, Valdez S, Herrera C, Atkinson EG, Mohammad A, Lopez D, Harris MA (2018) Cx43 overexpression in osteocytes prevents osteocyte apoptosis and preserves cortical bone quality in aging mice. JBMR Plus 2(4):206–216CrossRefGoogle Scholar
  11. 11.
    Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12(9):814CrossRefGoogle Scholar
  12. 12.
    Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS (2018) Effects of estrogen status in osteocyte autophagy and its relation to osteocyte viability in alveolar process of ovariectomized rats. Biomed Pharmacother 98:406–415CrossRefGoogle Scholar
  13. 13.
    Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC et al (2003) Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol 284(4):C934–C943CrossRefGoogle Scholar
  14. 14.
    Zhang B, Hou R, Zou Z, Luo T, Zhang Y, Wang L, Wang B (2018) Mechanically induced autophagy is associated with ATP metabolism and cellular viability in osteocytes in vitro. Redox Biol 14:492–498CrossRefGoogle Scholar
  15. 15.
    Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556CrossRefGoogle Scholar
  16. 16.
    Oberhammer F, Wilson JW, Dive C et al (1993) Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J 12:3679–3684CrossRefGoogle Scholar
  17. 17.
    Slee EA, Adrain C, Martin SJ (1999) Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6:1067–1074CrossRefGoogle Scholar
  18. 18.
    Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 [beta]-converting enzyme. Cell 75:641–652CrossRefGoogle Scholar
  19. 19.
    Creagh E, Martin S (2001) Caspases: cellular demolition experts. Biochem Soc Trans 29:696–701CrossRefGoogle Scholar
  20. 20.
    Slee EA, Harte MT, Kluck RM et al (1999) Ordering the cytochrome c-initiated Caspase cascade: hierarchical activation of Caspases-2, À3, À6, À7, À8, and À10 in a Caspase-9-dependent manner. J Cell Biol 144:281–292CrossRefGoogle Scholar
  21. 21.
    Farquharson C, Whitehead C, Rennie S, Thorp B, Loveridge N (1992) Cell proliferation and enzyme activities associated with the development of avian tibial dyschondroplasia: an in situ biochemical study. Bone 13:59–67CrossRefGoogle Scholar
  22. 22.
    Ekert PG, Silke J, Vaux DL (1999) Caspase inhibitors. Cell Death Differ 6:1081–1086CrossRefGoogle Scholar
  23. 23.
    Mann V, Huber C, Kogianni G, Collins F, Noble B (2007) The antioxidant effect of estrogen and selective estrogen receptor modulators in the inhibition of osteocyte apoptosis in vitro. Bone 40:674–684CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Val Mann
    • 1
  • Brendon Noble
    • 2
  1. 1.Faculty of Medicine and DentistryUniversity of PlymouthPlymouthUK
  2. 2.School of Life Sciences, University of WestminsterLondonUK

Personalised recommendations