Bone Research Protocols pp 21-38 | Cite as
Isolation and Generation of Osteoblasts
Protocol
First Online:
Abstract
This chapter describes the isolation, culture, and staining of osteoblasts. The key advantages of this assay are that it allows direct measurement of bone matrix deposition and mineralization, as well as yielding good quantities of osteoblasts at defined stages of differentiation for molecular and histological analysis. An additional focus of this chapter will be the culture of osteoblasts from less conventional animal species.
Key words
Osteoblast Bone formation MineralizationNotes
Acknowledgment
The authors gratefully acknowledge the support of The Leverhulme Trust and Arthritis Research UK.
References
- 1.Peck WA, Birge SJJ, Fedak SA (1964) Bone cells: biochemical and biological studies after enzymatic isolation. Science 146:1476–1477CrossRefGoogle Scholar
- 2.Orriss IR, Taylor SE, Arnett TR (2012) Rat osteoblast cultures. Methods Mol Biol 816:31–41CrossRefGoogle Scholar
- 3.Dillon JP, Waring-Green VJ, Taylor AM, Wilson PJ, Birch M, Gartland A, Gallagher JA (2012) Primary human osteoblast cultures. Methods Mol Biol 816:3–18CrossRefGoogle Scholar
- 4.Bakker AD, Klein-Nulend J (2012) Osteoblast isolation from murine calvaria and long bones. Methods Mol Biol 816:19–29CrossRefGoogle Scholar
- 5.Taylor SE, Shah M, Orriss IR (2014) Generation of rodent and human osteoblasts. Bonekey Rep 3:85CrossRefGoogle Scholar
- 6.Wong G, Cohn DV (1974) Separation of parathyroid hormone and calcitonin-sensitive cells from non-responsive bone cells. Nature 252:713–715CrossRefGoogle Scholar
- 7.Bellows CG, Aubin JE, Heersche JN, Antosz ME (1986) Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif Tissue Int 38:143–154CrossRefGoogle Scholar
- 8.Shah M, Gburcik V, Reilly P, Sankey RA, Emery RJ, Clarkin CE, Pitsillides AA (2015) Local origins impart conserved bone type-related differences in human osteoblast behaviour. Eur Cell Mater 29:155–175CrossRefGoogle Scholar
- 9.Orriss IR, Utting JC, Brandao-Burch A, Colston K, Grubb BR, Burnstock G, Arnett TR (2007) Extracellular nucleotides block bone mineralization in vitro: evidence for dual inhibitory mechanisms involving both P2Y2 receptors and pyrophosphate. Endocrinology 148:4208–4216CrossRefGoogle Scholar
- 10.Brandao-Burch A, Utting JC, Orriss IR, Arnett TR (2005) Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization. Calcif Tissue Int 77:167–174CrossRefGoogle Scholar
- 11.Utting JC, Robins SP, Brandao-Burch A, Orriss IR, Behar J, Arnett TR (2006) Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Exp Cell Res 312:1693–1702CrossRefGoogle Scholar
- 12.Beresford JN, Gallagher JA, Poser JW, Russell RG (1984) Production of osteocalcin by human bone cells in vitro. Effects of 1,25(OH)2D3, 24,25(OH)2D3, parathyroid hormone, and glucocorticoids. Metab Bone Dis Relat Res 5:229–134CrossRefGoogle Scholar
- 13.Couchourel D, Aubry I, Delalandre A, Lavigne M, Martel-Pelletier J, Pelletier JP, Lajeunesse D (2009) Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type I collagen production. Arthritis Rheum 60:1438–1450CrossRefGoogle Scholar
- 14.Ranzoni AM, Corcelli M, Hau KL, Kerns JG, Vanleene M, Shefelbine S, Jones GN, Moschidou D, Dala-Ali B, Goodship AE, De Coppi P, Arnett TR, Guillot PV (2016) Counteracting bone fragility with human amniotic mesenchymal stem cells. Sci Rep 6:39656CrossRefGoogle Scholar
- 15.Perpetuo IP, Meeson R, Pitsillides AA, Doube M, Orriss IR (2016) Primary osteoblast culture from domestic dog (Canis lupus familiaris). Bone Abstracts 5:P166Google Scholar
- 16.Perpetuo IP, Shah M, Parsons K, Orriss IR, Doube M, Pitsillides AA, Meeson R (2016) Canine osteoblasts from trabecular, cortical and subchondral bone present differences in alkaline phosphatase activity. Bone Abstracts 5:P165Google Scholar
- 17.Lajeunesse D, Martel-Pelletier J, Fernandes JC, Laufer S, Pelletier JP (2004) Treatment with licofelone prevents abnormal subchondral bone cell metabolism in experimental dog osteoarthritis. Ann Rheum Dis 63:78–83CrossRefGoogle Scholar
- 18.Perpetuo IP, Felder A, Pitsillides AA, Doube M, Orriss IR (2016) Primary osteoblast culture from red fox (Vulpes Vulpes). Bone Abstracts 5:P144Google Scholar
- 19.Bigi A, Panzavolta S, Sturba L, Torricelli P, Fini M, Giardino R (2006) Normal and osteopenic bone-derived osteoblast response to a biomimetic gelatin-calcium phosphate bone cement. J Biomed Mater Res 78:739–745CrossRefGoogle Scholar
- 20.Torricelli P, Fini M, Giavaresi G, Rocca M, Pierini G, Giardino R (2000) Isolation and characterization of osteoblast cultures from normal and osteopenic sheep for biomaterials evaluation. J Biomed Mater Res 52:177–182CrossRefGoogle Scholar
- 21.Schmitt SC, Wiedmann-Al-Ahmad M, Kuschnierz J, Al-Ahmad A, Huebner U, Schmelzeisen R, Gutwald R (2008) Comparative in vitro study of the proliferation and growth of ovine osteoblast-like cells on various alloplastic biomaterials manufactured for augmentation and reconstruction of tissue or bone defects. J Mater Sci Mater Med 19:1441–1450CrossRefGoogle Scholar
- 22.McDuffee LA, Anderson GI (2003) In vitro comparison of equine cancellous bone graft donor sites and tibial periosteum as sources of viable osteoprogenitors. Vet Surg 32:455–463CrossRefGoogle Scholar
- 23.Patel JJ, Utting JC, Key ML, Orriss IR, Taylor SE, Whatling P, Arnett TR (2012) Hypothermia inhibits osteoblast differentiation and bone formation but stimulates osteoclastogenesis. Exp Cell Res 318:2237–2244CrossRefGoogle Scholar
- 24.Perpetuo IP, Orriss IR, and Doube M (2017) Incubation at physiological temperature promotes ovine osteoblast proliferation and activity. Bone research society annual meeting, p. 76Google Scholar
- 25.Orriss IR, Hajjawi MO, Huesa C, MacRae VE, Arnett TR (2014) Optimisation of the differing conditions required for bone formation in vitro by primary osteoblasts from mice and rats. Int J Mol Med 34:1201–1208CrossRefGoogle Scholar
- 26.Chen TL, Cone CM, Feldman D (1983) Glucocorticoid modulation of cell proliferation in cultured osteoblast-like bone cells: differences between rat and mouse. Endocrinology 112:1739–1745CrossRefGoogle Scholar
- 27.Banerjee C, McCabe LR, Choi JY, Hiebert SW, Stein JL, Stein GS, Lian JB (1997) Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. JCell Biochem 66:1–8CrossRefGoogle Scholar
- 28.Li H, Qian W, Weng X, Wu Z, Li H, Zhuang Q, Feng B, Bian Y (2012) Glucocorticoid receptor and sequential P53 activation by dexamethasone mediates apoptosis and cell cycle arrest of osteoblastic MC3T3-E1 cells. PLoS One 7:e37030CrossRefGoogle Scholar
- 29.Li J, Zhang N, Huang X, Xu J, Fernandes JC, Dai K, Zhang X (2013) Dexamethasone shifts bone marrow stromal cells from osteoblasts to adipocytes by C/EBPalpha promoter methylation. Cell Death Dis 4:e832CrossRefGoogle Scholar
- 30.Esmail MY, Sun L, Yu L, Xu H, Shi L, Zhang J (2012) Effects of PEMF and glucocorticoids on proliferation and differentiation of osteoblasts. Electromagn Biol Med 31:375–381CrossRefGoogle Scholar
- 31.Orriss IR, Key ML, Hajjawi MO, Millan JL, Arnett TR (2015) Acidosis is a key regulatior of osteoblast ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) expression and activity. J Cell Physiol 230:3049–3056CrossRefGoogle Scholar
- 32.Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636CrossRefGoogle Scholar
- 33.Orriss IR, Arnett TR (2012) Rodent osteoclast cultures. Methods Mol Biol 816:103–117CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019