Mechanical Properties of Bone Ex Vivo

  • Simon R. Goodyear
  • Richard M. AspdenEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1914)


The primary functions of bone are to provide support and protection—mechanical functions. The aim of this chapter is to set out some of the methods that can be used to measure these properties in cortical and cancelleous bone from large (e.g., human or bovine) and small (e.g., mouse) animals. The difference between the properties of the sample (extrinsic properties) and the properties of the material (intrinsic properties) is introduced and techniques for measuring them suggested. The addition of other tests to give a complete characterization of a bone sample is presented.

Key words

Mechanical testing Bone Material properties Mechanical properties 


  1. 1.
    Aspden RM (1990) Constraining the lateral dimensions of uniaxially loaded materials increases the calculated strength and stiffness: application to muscle and bone. J Mater Sci Mater Med 1:100–104CrossRefGoogle Scholar
  2. 2.
    Bryce R, Aspden RM, Wytch R (1995) Stiffening effects of cortical bone on vertebral cancellous bone in situ. Spine (Phila Pa 1976) 20:999–1003CrossRefGoogle Scholar
  3. 3.
    Linde F, Hvid I (1989) The effect of constraint on the mechanical behaviour of trabecular bone specimens. J Biomech 22:485–490CrossRefGoogle Scholar
  4. 4.
    Gibson LJ (1985) The mechanical behaviour of cancellous bone. J Biomech 18(5):317–328CrossRefGoogle Scholar
  5. 5.
    Gibson LJ, Ashby MF (1988) Cellular solids. Pergamon Press, OxfordGoogle Scholar
  6. 6.
    Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Nazarian A (2015) Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng 137(1):010802–010815CrossRefGoogle Scholar
  7. 7.
    Cowin SC (2001) In: Cowin SC (ed) Bone mechanics handbook. CRC Press, Boca RatonGoogle Scholar
  8. 8.
    Turner CH, Burr DB (2001) Experimental techniques for bone mechanics. In: Cowin SC (ed) Bone mechanics handbook, vol 2. CRC Press, Boca Raton, pp 7–1-7-35Google Scholar
  9. 9.
    Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14(4):595–608CrossRefGoogle Scholar
  10. 10.
    Spatz HC, Oleary EJ, Vincent JFV (1996) Young's moduli and shear moduli in cortical bone. Proc Royal Soc B263:287–294Google Scholar
  11. 11.
    Li B, Aspden RM (1997) Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res 12:641–651CrossRefGoogle Scholar
  12. 12.
    Lees S, Heeley JD, Cleary PF (1979) A study of some properties of a sample of bovine cortical bone using ultrasound. Calcif Tissue Int 29:107–117CrossRefGoogle Scholar
  13. 13.
    Mkukuma LD, Imrie CT, Skakle JMS, Hukins DWL, Aspden RM (2005) Thermal stability and structure of cancellous bone mineral from the femoral head of patients with osteoarthritis or osteoporosis. Ann Rheum Dis 64(2):222–225CrossRefGoogle Scholar
  14. 14.
    Stefan U, Michael B, Werner S (2010) Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone. Bone 47(6):1048–1053CrossRefGoogle Scholar
  15. 15.
    Öhman C, Dall’Ara E, Baleani M, Jan SVS, Viceconti M (2008) The effects of embalming using a 4% formalin solution on the compressive mechanical properties of human cortical bone. Clin Biomech 23(10):1294–1298CrossRefGoogle Scholar
  16. 16.
    Nazarian A, Hermannsson BJ, Muller J, Zurakowski D, Snyder BD (2009) Effects of tissue preservation on murine bone mechanical properties. J Biomech 42(1):82–86CrossRefGoogle Scholar
  17. 17.
    van Haaren EH, van der Zwaard BC, van dV, Heyligers IC, Wuisman PI, Smit TH (2008) Effect of long-term preservation on the mechanical properties of cortical bone in goats. Acta Orthop 79(5):708–716CrossRefGoogle Scholar
  18. 18.
    Keaveny TM, Guo XE, Wachtel EF, McMahon TA, Hayes WC (1994) Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J Biomech 27(9):1127–1136CrossRefGoogle Scholar
  19. 19.
    Aspden RM (1990) The effect of boundary conditions on the results of mechanical tests. J Biomech 23:623CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Arthritis and Musculoskeletal Medicine, Institute of Medical SciencesUniversity of AberdeenAberdeenUK

Personalised recommendations