Knocking Out MicroRNA Genes in Rice with CRISPR-Cas9

  • Jianping Zhou
  • Zhaohui Zhong
  • Hongqiao Chen
  • Qian Li
  • Xuelian Zheng
  • Yiping Qi
  • Yong ZhangEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1917)


Background: MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in plant development and stress responses. Loss-of-function analysis of miRNA genes has been traditionally challenging due to lack of appropriate knockout tools. In this chapter, we describe a method of using CRISPR-Cas9 for knocking out microRNA genes in rice by Agrobacterium-mediated transformation. We also demonstrate single-strand conformation polymorphism (SSCP) as an effective genotyping method for screening CRISPR-Cas9-induced mutations.

Key words

MicroRNAs CRISPR-Cas9 Genome editing Rice SSCP 



This work was supported by grants including the National Science Foundation of China (31330017 and 31771486), the Sichuan Youth Science and Technology Foundation (2017JQ0005), the National Transgenic Major Project (2018ZX08022001-003), the Fundamental Research Funds for the Central Universities (ZYGX2016J119 and ZYGX2016J122) to YZ and XZ, and a start-up fund from the University of Maryland, College Park to YQ.


  1. 1.
    Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687CrossRefGoogle Scholar
  2. 2.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefGoogle Scholar
  3. 3.
    Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14(7):447–459CrossRefGoogle Scholar
  4. 4.
    Chen X (2012) Small RNAs in development – insights from plants. Curr Opin Genet Dev 22(4):361–367CrossRefGoogle Scholar
  5. 5.
    Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39(8):1033–1037CrossRefGoogle Scholar
  6. 6.
    Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D (2010) A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 6(7):e1001031CrossRefGoogle Scholar
  7. 7.
    Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G (2012) Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell 24(2):415–427CrossRefGoogle Scholar
  8. 8.
    Reichel M, Li Y, Li J, Millar AA (2015) Inhibiting plant microRNA activity: molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs. Plant Biotechnol J 13(7):915–926CrossRefGoogle Scholar
  9. 9.
    Lowder LG, Zhang D, Baltes NJ, Paul JW 3rd, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169(2):971–985CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Zhang F, Li XH, Christian M, Bogdanove AJ, Qi YP, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161(1):20–27CrossRefGoogle Scholar
  11. 11.
    Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82CrossRefGoogle Scholar
  12. 12.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823CrossRefGoogle Scholar
  13. 13.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821CrossRefGoogle Scholar
  14. 14.
    Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J-L, Gao C (2013b) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688CrossRefGoogle Scholar
  15. 15.
    Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232CrossRefGoogle Scholar
  16. 16.
    Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER, Zhang Y, Qi Y (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018CrossRefGoogle Scholar
  17. 17.
    Tang X, Zheng X, Qi Y, Zhang D, Cheng Y, Tang A, Voytas DF, Zhang Y (2016) A single transcript CRISPR-Cas9 system for efficient genome editing in plants. Mol Plant 9(7):1088–1091CrossRefGoogle Scholar
  18. 18.
    Zhou J, Deng K, Cheng Y, Zhong Z, Tian L, Tang X, Tang A, Zheng X, Zhang T, Qi Y, Zhang Y (2017) CRISPR-Cas9 based genome editing reveals new insights into MicroRNA function and regulation in rice. Front Plant Sci 8:1598. Scholar
  19. 19.
    Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691CrossRefGoogle Scholar
  20. 20.
    Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31(8):691–693CrossRefGoogle Scholar
  21. 21.
    Paul JW 3rd, Qi Y (2016) CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects. Plant Cell Rep 35(7):1417–1427CrossRefGoogle Scholar
  22. 22.
    Cui W, Liu W, Wu G (1995) A simple method for the transformation of agrobacterium tumefaciens by foreign DNA. Chin J Biotechnol 11(4):267–274PubMedGoogle Scholar
  23. 23.
    Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with agrobacterium allows high-speed transformation of rice. Plant J 47:969–976CrossRefGoogle Scholar
  24. 24.
    Zheng XL, Yang SX, Zhang DW, Zhong ZH, Tang X, Deng KJ, Zhou JP, Qi YP, Zhang Y (2016) Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism. Plant Cell Rep 35(7):1545–1554CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jianping Zhou
    • 1
  • Zhaohui Zhong
    • 1
  • Hongqiao Chen
    • 1
  • Qian Li
    • 1
  • Xuelian Zheng
    • 1
  • Yiping Qi
    • 2
    • 3
  • Yong Zhang
    • 1
    Email author
  1. 1.Department of Biotechnology, School of Life Science and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkUSA
  3. 3.Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleUSA

Personalised recommendations