Advertisement

DNA-Free Genome Editing via Ribonucleoprotein (RNP) Delivery of CRISPR/Cas in Lettuce

  • Jongjin Park
  • Sunmee Choi
  • Slki Park
  • Jiyoung Yoon
  • Aiden Y. Park
  • Sunghwa ChoeEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1917)

Abstract

CRISPR/Cas9 nuclease system is getting popular in precise genome editing of both eukaryotic and prokaryotic systems due to its accuracy, programmability, and relative ease of use. CRISPR/Cas systems can be delivered into live cells via plasmid DNA, RNA, and ribonucleoprotein (RNP). Of these, the RNP method is of special interest due to enzymatic action in shorter time and controllability over their activity. In addition, because RNP does not involve DNA, none of unwanted DNA footprints are left in the host genome. Previously, we demonstrated that plant protoplasts can be transfected with functional RNPs and the whole plants can be regenerated from an engineered protoplast. Relative to the published methods, the revised protocols described here should help increase the success rate of whole plant regeneration by reducing damages to the naked protoplast cells.

Key words

CRISPR/Cas Ribonucleoprotein (RNP) Genome editing Lettuce Protoplast Tissue culture 

References

  1. 1.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821CrossRefGoogle Scholar
  2. 2.
    Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838CrossRefGoogle Scholar
  3. 3.
    Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949CrossRefGoogle Scholar
  4. 4.
    Ma E, Harrington LB, O’Connell MR, Zhou K, Doudna JA (2015) Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes. Mol Cell 60(3):398–407CrossRefGoogle Scholar
  5. 5.
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771CrossRefGoogle Scholar
  6. 6.
    Fagerlund RD, Staals RH, Fineran PC (2015) The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biol 16:251CrossRefGoogle Scholar
  7. 7.
    Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K (2016) Plant regeneration: cellular origins and molecular mechanisms. Development 143(9):1442–1451CrossRefGoogle Scholar
  8. 8.
    Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33(11):1162–1164CrossRefGoogle Scholar
  9. 9.
    Kim H, Kim ST, Ryu J, Kang BC, Kim JS, Kim SG (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406CrossRefGoogle Scholar
  10. 10.
    Anders C, Jinek M (2014) In vitro enzymology of Cas9. Methods Enzymol 546:1–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jongjin Park
    • 1
  • Sunmee Choi
    • 2
  • Slki Park
    • 2
    • 3
  • Jiyoung Yoon
    • 2
  • Aiden Y. Park
    • 2
    • 3
  • Sunghwa Choe
    • 1
    • 2
    • 3
    Email author
  1. 1.Naturegenic Inc.West LafayetteUSA
  2. 2.G+FLAS Life SciencesSeoulSouth Korea
  3. 3.School of Biological Sciences, College of Natural SciencesSeoul National UniversitySeoulSouth Korea

Personalised recommendations