Advertisement

Targeted Mutagenesis Using FnCpf1 in Tobacco

  • Akira Endo
  • Seiichi TokiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1917)

Abstract

Various CRISPR/Cas9 systems have been extensively applied for targeted mutagenesis to generate mutants that impaired in genes of interest. Clustered regularly interspersed short palindromic repeats (CRISPR) from Prevotella and Francisella 1 (Cpf1) is new RNA-directed endonuclease possessing some differences as compared to Cas9. Several papers have shown that Cpf1 could be a versatile tool in plant genome engineering. Cfp1 from Francisella novicida (FnCpf1) recognizes TTN as its protospacer adjacent motif (PAM). TTN is a shortest PAM among other known Cpf1s such as AsCpf1 or LbCpf1, which use TTTN as PAM. The length of PAM can be the restriction of the number of target sequences. Cpf1 generates cohesive DNA end after the digestion of target sequences. Sticky DNA end is thought to appropriate for in vivo ligation rather than blunt DNA end created by Cas9. Therefore, FnCpf1 is practical for targeted mutagenesis experiments. The application of FnCpf1-mediated targeted mutagenesis to the plant genome engineering could accelerate molecular breeding of crops. Here, we describe procedures for targeted mutagenesis in tobacco using FnCpf1.

Key words

CRISPR/Cpf1 FnCpf1 Targeted mutagenesis Tobacco 

Notes

Acknowledgements

We would like to thank Masafumi Mikami, and Drs. Masaki Endo and Hidetaka Kaya for technical assistance and valuable suggestions. This work is supported by Cabinet Office, Government of Japan, the Cross-ministerial Strategic Innovation Promotion program (SIP).

References

  1. 1.
    Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350. https://doi.org/10.1146/annurev-arplant-042811-105552CrossRefGoogle Scholar
  2. 2.
    Yin K, Gao C, Qiu JL (2017) Progress and prospects in plant genome editing. Nat Plants 3:17107. https://doi.org/10.1038/nplants.2017.107CrossRefPubMedGoogle Scholar
  3. 3.
    Watanabe K, Kobayashi A, Endo M, Sage-Ono K, Toki S, Ono M (2017) CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Sci Rep 7(1):10028. https://doi.org/10.1038/s41598-017-10715-1CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nakajima I, Ban Y, Azuma A, Onoue N, Moriguchi T, Yamamoto T, Toki S, Endo M (2017) CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One 12(5):e0177966. https://doi.org/10.1371/journal.pone.0177966CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS, Wu WY, Scott DA, Severinov K, van der Oost J, Zhang F (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 35(1):31–34. https://doi.org/10.1038/nbt.3737CrossRefGoogle Scholar
  6. 6.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY) 339:819–823. https://doi.org/10.1126/science.1231143CrossRefGoogle Scholar
  7. 7.
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771. https://doi.org/10.1016/j.cell.2015.09.038CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Verwaal R, Buiting-Wiessenhaan N, Dalhuijsen S, Roubos JA (2017) CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae. Yeast 35:201. https://doi.org/10.1002/yea.3278CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tu M, Lin L, Cheng Y, He X, Sun H, Xie H, Fu J, Liu C, Li J, Chen D, Xi H, Xue D, Liu Q, Zhao J, Gao C, Song Z, Qu J, Gu F (2017) A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells. Nucleic Acids Res 45(19):11295–11304. https://doi.org/10.1093/nar/gkx783CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Endo A, Masafumi M, Kaya H, Toki S (2016) Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 6:38169. https://doi.org/10.1038/srep38169CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK (2016) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34(8):869–874. https://doi.org/10.1038/nbt.3620CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS (2016) Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34(8):863–868. https://doi.org/10.1038/nbt.3609CrossRefPubMedGoogle Scholar
  13. 13.
    Moreno-Mateos MA, Fernandez JP, Rouet R, Vejnar CE, Lane MA, Mis E, Khokha MK, Doudna JA, Giraldez AJ (2017) CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nat Commun 8(1):2024. https://doi.org/10.1038/s41467-017-01836-2CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER, Zhang Y, Qi Y (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018. https://doi.org/10.1038/nplants.2017.18CrossRefPubMedGoogle Scholar
  15. 15.
    Ota S, Hisano Y, Muraki M, Hoshijima K, Dahlem TJ, Grunwald DJ, Okada Y, Kawahara A (2013) Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18:450–458. https://doi.org/10.1111/gtc.12050CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ansai S, Inohaya K, Yoshiura Y, Schartl M, Uemura N, Takahashi R, Kinoshita M (2014) Design, evaluation, and screening methods for efficient targeted mutagenesis with transcription activator-like effector nucleases in medaka. Dev Growth Differ 56:98–107. https://doi.org/10.1111/dgd.12104CrossRefPubMedGoogle Scholar
  17. 17.
    Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6:26685. https://doi.org/10.1038/srep26685CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Xu R, Qin R, Li H, Li D, Li L, Wei P, Yang J (2017) Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 15(6):713–717. https://doi.org/10.1111/pbi.12669CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Plant Genome Engineering Research UnitInstitute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukubaJapan
  2. 2.Kihara Institute for Biological Research, Yokohama City UniversityYokohamaJapan

Personalised recommendations