Genome Editing in Soybean with CRISPR/Cas9

  • Junqi Liu
  • Samatha Gunapati
  • Nicole T. Mihelich
  • Adrian O. Stec
  • Jean-Michel Michno
  • Robert M. StuparEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1917)


CRISPR/Cas9 mediated genome editing technology has experienced rapid advances in recent years and has been applied to a wide variety of plant species, including soybean. Several platforms have been developed for designing and cloning of single CRISPR targets or multiple targets in a single destination vector. This chapter provides an updated working protocol for applying CRISPR/Cas9 technology to target a single gene or multiple genes simultaneously in soybean. We describe two platforms for cloning single CRISPR targets and multiplexing targets, respectively, and reagent delivery methodologies. The protocols address crucial limiting steps that can limit CRISPR editing in soybean hairy roots, composite plants, and tissue culture-based regenerated whole plants. To date, transgenic soybean plants with mutagenesis in up to three target genes have been obtained with this procedure.

Key words

CRISPR/Cas9 Hairy root transformation Composite plant Agrobacterium-mediated whole plant transformation Gradient polyacrylamide gel electrophoresis (PAGE) 


  1. 1.
    Cho HJ, Farrand SK, Noel GR, Widholm JM (2000) High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210:195–204CrossRefGoogle Scholar
  2. 2.
    Kereszt A, Li D, Indrasumunar A, Nguyen CD, Nontachaiyapoom S, Kinkema M, Gresshoff PM (2007) Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc 2:948–952CrossRefGoogle Scholar
  3. 3.
    Liang Z, Chen K, Zhang Y, Liu J, Yin K, Qiu J, Gao CX (2018) Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat Protoc 13:413–430CrossRefGoogle Scholar
  4. 4.
    Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A, Roffe S, Ovadis M, Tzfira T, Vainstein A (2010) Nontransgenic genome modification in plant cells. Plant Physiol 154:1079–1087CrossRefGoogle Scholar
  5. 5.
    Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu JL, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617CrossRefGoogle Scholar
  7. 7.
    Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ, Coffman AP, Dobbs D, Joung JK, Voytas DF, Stupar RM (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156:466–473CrossRefGoogle Scholar
  8. 8.
    Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940CrossRefGoogle Scholar
  9. 9.
    Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169:960–970CrossRefGoogle Scholar
  10. 10.
    Curtin SJ, Xiong Y, Michno JM, Campbell BW, Stec AO, Čermák T, Starker C, Voytas DF, Eamens AL, Stupar RM (2017) CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. Plant Biotechnol J 16:1125. Scholar
  11. 11.
    Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soybean. Plant Biotechnol J 16:176–185CrossRefGoogle Scholar
  12. 12.
    Kanazashi Y, Hirose A, Takahashi I, Mikami M, Endo M, Hirose S, Toki S, Kaga A, Naito K, Ishimoto M, Abe J, Yamada T (2018) Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA. Plant Cell Rep 37:553–563CrossRefGoogle Scholar
  13. 13.
    Michno JM, Wang XB, Liu J, Curtin SJ, Kono TJ, Stupar RM (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6:243–253CrossRefGoogle Scholar
  14. 14.
    Cermak T, Curtin SJ, Gil-Humanes H, Cegan R, Kono TJ, Konecna E, Belanto J, Starker C, Wathre JW, Greenstein RL, Voytas DF (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217PubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhu X, Xu Y, Yu S, Lu L, Ding M, Cheng J, Song G, Gao X, Yao L, Fan D, Meng S, Zhang X, Hu S, Tian Y (2014) An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Sci Rep 4:6420–6428CrossRefGoogle Scholar
  16. 16.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497CrossRefGoogle Scholar
  17. 17.
    Paz MM, Martinez JC, Kalvig AB, Fonger TM, Wang K (2006) Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25:206–213CrossRefGoogle Scholar
  18. 18.
    Paz MM, Shou H, Guo Z, Zhang Z, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179CrossRefGoogle Scholar
  19. 19.
    Mankin SL, Hill DS, Olhoft PM, Toren E, Wenck AR, Nea L, Xing L, Brown J, Fu H, Ireland L, Jia H, Hillebrand H, Jones T, Song HS (2007) Disarming and sequencing of Agrobacterium rhizogenes strain K599 (NCPPB2659) plasmid pRi2659. In Vitro Cell Dev Biol 43:521–535CrossRefGoogle Scholar
  20. 20.
    Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Junqi Liu
    • 1
  • Samatha Gunapati
    • 1
  • Nicole T. Mihelich
    • 1
  • Adrian O. Stec
    • 1
  • Jean-Michel Michno
    • 1
  • Robert M. Stupar
    • 1
    Email author
  1. 1.Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulUSA

Personalised recommendations