Advertisement

Calpain pp 57-66 | Cite as

In Vivo Monitoring of Calpain Activity by Forster Resonance Energy Transfer

  • William Lostal
  • Daniel Stockholm
  • Isabelle RichardEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1915)

Abstract

Calpains are a 15-member class of calcium-activated nonlysosomal neutral proteases. They are involved in many cellular processes and are highly upregulated in pathological conditions. Some are ubiquitously expressed (CAPN1, CAPN2, CAPN4, CAPN5, CAPN7, and CAPN10), but others are thought to be localized in specific tissues. The monitoring of in vivo calpain activity is required for physiological, pathological, and therapeutic evaluations. This past decade, a tool for monitoring calpain activity in such conditions was developed using Forster resonance energy transfer (FRET). Studies showed that the level of calpain activity correlates with a decrease in FRET between the two fluorescent proteins. This chapter describes the methodologies from the design of the construct to the imaging procedure and analysis to evaluate ubiquitous calpain activity in vivo.

Key words

Calpain activity Muscle fibers In vivo FRET Imaging 

References

  1. 1.
    Smith MA, Schnellmann RG (2012) Calpains, mitochondria, and apoptosis. Cardiovasc Res 96:32–37CrossRefGoogle Scholar
  2. 2.
    Potz BA, Abid MR, Sellke FW (2016) Role of calpain in pathogenesis of human disease processes. J Nat Sci 2:e218PubMedPubMedCentralGoogle Scholar
  3. 3.
    Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801CrossRefGoogle Scholar
  4. 4.
    Baudry M, Chou MM, Bi X (2013) Targeting calpain in synaptic plasticity. Expert Opin Ther Targets 17:579–592CrossRefGoogle Scholar
  5. 5.
    Kurbatskaya K, Phillips EC, Croft CL, Dentoni G, Hughes MM, Wade MA, Al-Sarraj S, Troakes C, O'Neill MJ, Perez-Nievas BG, Hanger DP, Noble W (2016) Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer's disease brain. Acta Neuropathol Commun 4:34CrossRefGoogle Scholar
  6. 6.
    Nakajima E, Hammond KB, Rosales JL, Shearer TR, Azuma M (2011) Calpain, not caspase, is the causative protease for hypoxic damage in cultured monkey retinal cells. Invest Ophthalmol Vis Sci 52:7059–7067CrossRefGoogle Scholar
  7. 7.
    Kumar S, Kain V, Sitasawad SL (2012) High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways. Biochim Biophys Acta 1820:907–920CrossRefGoogle Scholar
  8. 8.
    Li FZ, Cai PC, Song LJ, Zhou LL, Zhang Q, Rao SS, Xia Y, Xiang F, Xin JB, Greer PA, Shi HZ, Su Y, Ma WL, Ye H (2015) Crosstalk between calpain activation and TGF-beta1 augments collagen-I synthesis in pulmonary fibrosis. Biochim Biophys Acta 1852:1796–1804CrossRefGoogle Scholar
  9. 9.
    Panico P, Salazar AM, Burns AL, Ostrosky-Wegman P (2014) Role of calpain-10 in the development of diabetes mellitus and its complications. Arch Med Res 45:103–115CrossRefGoogle Scholar
  10. 10.
    Covington MD, Arrington DD, Schnellmann RG (2009) Calpain 10 is required for cell viability and is decreased in the aging kidney. Am J Physiol Renal Physiol 296:F478–F486CrossRefGoogle Scholar
  11. 11.
    Stalker TJ, Gong Y, Scalia R (2005) The calcium-dependent protease calpain causes endothelial dysfunction in type 2 diabetes. Diabetes 54:1132–1140CrossRefGoogle Scholar
  12. 12.
    Gallardo E, de Andres I, Illa I (2001) Cathepsins are upregulated by IFN-gamma/STAT1 in human muscle culture: a possible active factor in dermatomyositis. J Neuropathol Exp Neurol 60:847–855CrossRefGoogle Scholar
  13. 13.
    Ahn YJ, Kim MS, Chung SK (2016) Calpain and caspase-12 Expression in lens epithelial cells of diabetic cataracts. Am J Ophthalmol 167:31–37CrossRefGoogle Scholar
  14. 14.
    Huang CJ, Gurlo T, Haataja L, Costes S, Daval M, Ryazantsev S, Wu X, Butler AE, Butler PC (2010) Calcium-activated calpain-2 is a mediator of beta cell dysfunction and apoptosis in type 2 diabetes. J Biol Chem 285:339–348CrossRefGoogle Scholar
  15. 15.
    Sorimachi H, Ono Y (2012) Regulation and physiological roles of the calpain system in muscular disorders. Cardiovasc Res 96:11–22CrossRefGoogle Scholar
  16. 16.
    Cagmat EB, Guingab-Cagmat JD, Vakulenko AV, Hayes RL, Anagli J (2015) Potential use of calpain inhibitors as brain injury therapy. In: Kobeissy FH (ed) Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. Frontiers in Neuroengineering, Boca Raton (FL)Google Scholar
  17. 17.
    Hollinger K, Selsby JT (2013) The physiological response of protease inhibition in dystrophic muscle. Acta Physiol (Oxf) 208:234–244CrossRefGoogle Scholar
  18. 18.
    Potz BA, Sabe AA, Abid MR, Sellke FW (2016) Calpains and coronary vascular disease. Circ J 80:4–10CrossRefGoogle Scholar
  19. 19.
    Stroev EA, Riazanova EA, Tavintsev VD (1993) A method of serial determination of calpain activity in biological material. Vopr Med Khim 39:56–58PubMedGoogle Scholar
  20. 20.
    Farr C, Berger S (2010) Measuring calpain activity in fixed and living cells by flow cytometry. J Vis Exp 41:2050Google Scholar
  21. 21.
    Niapour M, Berger S (2007) Flow cytometric measurement of calpain activity in living cells. Cytometry A 71:475–485CrossRefGoogle Scholar
  22. 22.
    Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887CrossRefGoogle Scholar
  23. 23.
    Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395CrossRefGoogle Scholar
  24. 24.
    Truong K, Sawano A, Mizuno H, Hama H, Tong KI, Mal TK, Miyawaki A, Ikura M (2001) FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Nat Struct Biol 8:1069–1073CrossRefGoogle Scholar
  25. 25.
    Mahajan NP, Linder K, Berry G, Gordon GW, Heim R, Herman B (1998) Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat Biotechnol 16:547–552CrossRefGoogle Scholar
  26. 26.
    Nagai Y, Miyazaki M, Aoki R, Zama T, Inouye S, Hirose K, Iino M, Hagiwara M (2000) A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nat Biotechnol 18:313–316CrossRefGoogle Scholar
  27. 27.
    Neininger A, Thielemann H, Gaestel M (2001) FRET-based detection of different conformations of MK2. EMBO Rep 2:703–708CrossRefGoogle Scholar
  28. 28.
    Vanderklish PW, Krushel LA, Holst BH, Gally JA, Crossin KL, Edelman GM (2000) Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 97:2253–2258CrossRefGoogle Scholar
  29. 29.
    Harris AS, Croall DE, Morrow JS (1988) The calmodulin-binding site in alpha-fodrin is near the calcium-dependent protease-I cleavage site. J Biol Chem 263:15754–15761PubMedGoogle Scholar
  30. 30.
    Stockholm D, Bartoli M, Sillon G, Bourg N, Davoust J, Richard I (2005) Imaging calpain protease activity by multiphoton FRET in living mice. J Mol Biol 346:215–222CrossRefGoogle Scholar
  31. 31.
    Bartoli M, Bourg N, Stockholm D, Raynaud F, Delevacque A, Han Y, Borel P, Seddik K, Armande N, Richard I (2006) A mouse model for monitoring calpain activity under physiological and pathological conditions. J Biol Chem 281:39672–39680CrossRefGoogle Scholar
  32. 32.
    Bronson SK, Plaehn EG, Kluckman KD, Hagaman JR, Maeda N, Smithies O (1996) Single-copy transgenic mice with chosen-site integration. Proc Natl Acad Sci U S A 93:9067–9072CrossRefGoogle Scholar
  33. 33.
    Bajar BT, Wang ES, Zhang S, Lin MZ, Chu J (2016) A guide to fluorescent protein FRET pairs. Sensors (Basel) 16:E1488CrossRefGoogle Scholar
  34. 34.
    Gordon GW, Berry G, Liang XH, Levine B, Herman B (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74:2702–2713CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • William Lostal
    • 1
  • Daniel Stockholm
    • 1
  • Isabelle Richard
    • 1
  1. 1.Généthon INSERM, U951, INTEGRARE Research Unit, University Paris–SaclayEvryFrance

Personalised recommendations