Co-immunoprecipitation as a Useful Tool for Detection of G Protein-Coupled Receptor Oligomers

  • Kirill ShumilovEmail author
  • Alejandra Valderrama-Carvajal
  • María García-Bonilla
  • Alicia Rivera
Part of the Neuromethods book series (NM, volume 144)


Allosteric interactions between transmembrane G protein-coupled receptors (GPCRs) could lead to conformational changes and therefore oligomer function diversity increase. GPCR complexes are composed by homo- or heteroreceptors that can further assemble into receptor mosaic. These allosteric interactions could play a major role in brain regulation and plasticity. Alteration in GPCR neuromodulation may be involved in depression, schizophrenia, and addiction. Several studies reported that activation of the D4 dopaminergic receptor blocks many of the molecular, cellular, and behavioral effects produced by morphine. The existence of a MOR/D4R allosteric interaction through orthosteric agonist might lead to a secure therapeutic use of morphine. Here we describe the co-immunoprecipitation technique to study direct GPCR interaction in cell culture.

Key words

G protein-coupled receptors Co-immunoprecipitation Addiction Morphine Dopamine 4 receptor μ-opioid receptor 


  1. 1.
    Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272. Scholar
  2. 2.
    Agnati LF, Fuxe K, Zoli M et al (1982) New vistas on synaptic plasticity: the receptor mosaic hypothesis of the engram. Med Biol 60:183–190PubMedGoogle Scholar
  3. 3.
    Fuxe K, Agnati LF, Benfenati F et al (1983) Evidence for the existence of receptor--receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J Neural Transm Suppl 18:165–179PubMedGoogle Scholar
  4. 4.
    Fuxe K, Borroto-Escuela DO (2016) Heteroreceptor complexes and their allosteric receptor–receptor interactions as a novel biological principle for integration of communication in the CNS: targets for drug development. Neuropsychopharmacology 41:380–382. Scholar
  5. 5.
    Han Y, Moreira IS, Urizar E et al (2009) Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol 5:688–695. Scholar
  6. 6.
    Farran B (2017) An update on the physiological and therapeutic relevance of GPCR oligomers. Pharmacol Res 117:303–327. Scholar
  7. 7.
    Fuxe K, Dahlström AB, Jonsson G et al (2010) The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog Neurobiol 90:82–100. Scholar
  8. 8.
    Borroto-Escuela DO, Carlsson J, Ambrogini P et al (2017) Understanding the role of GPCR heteroreceptor complexes in modulating the brain networks in health and disease. Front Cell Neurosci 11:1–20. Scholar
  9. 9.
    Rivera A, Gago B, Suárez-Boomgaard D et al (2017) Dopamine D4 receptor stimulation prevents nigrostriatal dopamine pathway activation by morphine: relevance for drug addiction. Addict Biol 22(5):1232–1245. Scholar
  10. 10.
    Gago B, Fuxe K, Agnati L et al (2007) Dopamine D(4) receptor activation decreases the expression of mu-opioid receptors in the rat striatum. J Comp Neurol 502:358–366. Scholar
  11. 11.
    Gago B, Suárez-Boomgaard D, Fuxe K et al (2011) Effect of acute and continuous morphine treatment on transcription factor expression in subregions of the rat caudate putamen. Marked modulation by D4 receptor activation. Brain Res 1407:47–61. Scholar
  12. 12.
    Gago B, Fuxe K, Brené S et al (2013) Early modulation by the dopamine D4 receptor of morphine-induced changes in the opioid peptide systems in the rat caudate putamen. J Neurosci Res 91:1533–1540. Scholar
  13. 13.
    Suárez-Boomgaard D, Gago B, Valderrama-Carvajal A et al (2014) Dopamine D4 receptor counteracts morphine-induced changes in μ-opioid receptor signaling in the striosomes of the rat caudate putamen. Int J Mol Sci 15:1481–1498. Scholar
  14. 14.
    Arvidsson U, Riedl M, Chakrabarti S et al (1995) Distribution and targeting of a μ-opioid receptor (MOR1) in brain and spinal cord. J Neurosci 15:3328–3341CrossRefGoogle Scholar
  15. 15.
    Rivera A, Cuéllar B, Girón FJ et al (2002) Dopamine D4 receptors are heterogeneously distributed in the striosomes/matrix compartments of the striatum. J Neurochem 80:219–229. Scholar
  16. 16.
    Rivera A, Trías S, Peñafiel A et al (2003) Expression of D4 dopamine receptors in striatonigral and striatopallidal neurons in the rat striatum. Brain Res 989:35–41. Scholar
  17. 17.
    Fuxe K, Marcellino D, Rivera A et al (2008) Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Res Rev 58:415–452. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kirill Shumilov
    • 1
    Email author
  • Alejandra Valderrama-Carvajal
    • 1
  • María García-Bonilla
    • 1
  • Alicia Rivera
    • 1
  1. 1.Facultad de CienciasUniversidad de Málaga, Instituto de Investigación BiomédicaMálagaSpain

Personalised recommendations