Advertisement

Computational Resources for Prediction and Analysis of Functional miRNA and Their Targetome

  • Isha Monga
  • Manoj KumarEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1912)

Abstract

microRNAs are evolutionarily conserved, endogenously produced, noncoding RNAs (ncRNAs) of approximately 19–24 nucleotides (nts) in length known to exhibit gene silencing of complementary target sequence. Their deregulated expression is reported in various disease conditions and thus has therapeutic implications. In the last decade, various computational resources are published in this field. In this chapter, we have reviewed bioinformatics resources, i.e., miRNA-centered databases, algorithms, and tools to predict miRNA targets. First section has enlisted more than 75 databases, which mainly covers information regarding miRNA registries, targets, disease associations, differential expression, interactions with other noncoding RNAs, and all-in-one resources. In the algorithms section, we have compiled about 140 algorithms from eight subcategories, viz. for the prediction of precursor (pre-) and mature miRNAs. These algorithms are developed on various sequence, structure, and thermodynamic based features incorporated into different machine learning techniques (MLTs). In addition, computational identification of miRNAs from high-throughput next generation sequencing (NGS) data and their variants, viz. isomiRs, differential expression, miR-SNPs, and functional annotation, are discussed. Prediction and analysis of miRNAs and their associated targets are also evaluated under miR-targets section providing knowledge regarding novel miRNA targets and complex host-pathogen interactions. In conclusion, we have provided comprehensive review of in silico resources published in miRNA research to help scientific community be updated and choose the appropriate tool according to their needs.

Key words

microRNA Transcription factor Database Algorithm Analysis tools Machine learning tools 

References

  1. 1.
    Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14(2):100–112.  https://doi.org/10.1038/nrg3355 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854CrossRefGoogle Scholar
  3. 3.
    Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89.  https://doi.org/10.1038/35040556 CrossRefPubMedGoogle Scholar
  4. 4.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858.  https://doi.org/10.1126/science.1064921 CrossRefPubMedGoogle Scholar
  5. 5.
    Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864.  https://doi.org/10.1126/science.1065329 CrossRefPubMedGoogle Scholar
  6. 6.
    Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862.  https://doi.org/10.1126/science.1065062 CrossRefPubMedGoogle Scholar
  7. 7.
    Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304(5671):734–736.  https://doi.org/10.1126/science.1096781 CrossRefPubMedGoogle Scholar
  8. 8.
    Flores O, Nakayama S, Whisnant AW, Javanbakht H, Cullen BR, Bloom DC (2013) Mutational inactivation of herpes simplex virus 1 microRNAs identifies viral mRNA targets and reveals phenotypic effects in culture. J Virol 87(12):6589–6603.  https://doi.org/10.1128/jvi.00504-13 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Glazov EA, Horwood PF, Assavalapsakul W, Kongsuwan K, Mitchell RW, Mitter N, Mahony TJ (2010) Characterization of microRNAs encoded by the bovine herpesvirus 1 genome. J Gen Virol 91(Pt 1):32–41.  https://doi.org/10.1099/vir.0.014290-0 CrossRefPubMedGoogle Scholar
  10. 10.
    Qureshi A, Thakur N, Monga I, Thakur A, Kumar M (2014) VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets. Database (Oxford) 2014:bau103.  https://doi.org/10.1093/database/bau103 CrossRefGoogle Scholar
  11. 11.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233.  https://doi.org/10.1016/j.cell.2009.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773.  https://doi.org/10.1038/nature03315 CrossRefPubMedGoogle Scholar
  13. 13.
    Peter ME (2010) Targeting of mRNAs by multiple miRNAs: the next step. Oncogene 29(15):2161–2164.  https://doi.org/10.1038/onc.2010.59 CrossRefPubMedGoogle Scholar
  14. 14.
    Shalgi R, Pilpel Y, Oren M (2010) Repression of transposable-elements – a microRNA anti-cancer defense mechanism? Trends Genet 26(6):253–259.  https://doi.org/10.1016/j.tig.2010.03.006 CrossRefPubMedGoogle Scholar
  15. 15.
    Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235.  https://doi.org/10.1038/nature03049 CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang R, Wang YQ, Su B (2008) Molecular evolution of a primate-specific microRNA family. Mol Biol Evol 25(7):1493–1502.  https://doi.org/10.1093/molbev/msn094 CrossRefPubMedGoogle Scholar
  17. 17.
    Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2(4):269–276.  https://doi.org/10.1038/nmeth746 CrossRefGoogle Scholar
  18. 18.
    Yang Q, Li L, Xue Z, Ye Q, Zhang L, Li S, Liu Y (2013) Transcription of the major neurospora crassa microRNA-like small RNAs relies on RNA polymerase III. PLoS Genet 9(1):e1003227.  https://doi.org/10.1371/journal.pgen.1003227 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jayaraj GG, Nahar S, Maiti S (2015) Nonconventional chemical inhibitors of microRNA: therapeutic scope. Chem Commun (Camb) 51(5):820–831.  https://doi.org/10.1039/c4cc04514a CrossRefGoogle Scholar
  20. 20.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefGoogle Scholar
  21. 21.
    Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22(3):165–173.  https://doi.org/10.1016/j.tig.2006.01.003 CrossRefPubMedGoogle Scholar
  22. 22.
    Londin E, Loher P, Telonis AG, Quann K, Clark P, Jing Y, Hatzimichael E, Kirino Y, Honda S, Lally M, Ramratnam B, Comstock CE, Knudsen KE, Gomella L, Spaeth GL, Hark L, Katz LJ, Witkiewicz A, Rostami A, Jimenez SA, Hollingsworth MA, Yeh JJ, Shaw CA, McKenzie SE, Bray P, Nelson PT, Zupo S, Van Roosbroeck K, Keating MJ, Calin GA, Yeo C, Jimbo M, Cozzitorto J, Brody JR, Delgrosso K, Mattick JS, Fortina P, Rigoutsos I (2015) Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci U S A 112(10):E1106–E1115.  https://doi.org/10.1073/pnas.1420955112 CrossRefGoogle Scholar
  23. 23.
    Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11(3):241–247.  https://doi.org/10.1261/rna.7240905 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Isik M, Korswagen HC, Berezikov E (2010) Expression patterns of intronic microRNAs in Caenorhabditis elegans. Silence 1(1):5.  https://doi.org/10.1186/1758-907X-1-5 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ramalingam P, Palanichamy JK, Singh A, Das P, Bhagat M, Kassab MA, Sinha S, Chattopadhyay P (2014) Biogenesis of intronic miRNAs located in clusters by independent transcription and alternative splicing. RNA 20(1):76–87.  https://doi.org/10.1261/rna.041814.113 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mah SM, Buske C, Humphries RK, Kuchenbauer F (2010) miRNA*: a passenger stranded in RNA-induced silencing complex? Crit Rev Eukaryot Gene Expr 20(2):141–148CrossRefGoogle Scholar
  27. 27.
    Yang JS, Phillips MD, Betel D, Mu P, Ventura A, Siepel AC, Chen KC, Lai EC (2011) Widespread regulatory activity of vertebrate microRNA* species. RNA 17(2):312–326.  https://doi.org/10.1261/rna.2537911 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC (2008) The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol 15(4):354–363.  https://doi.org/10.1038/nsmb.1409 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Guo L, Lu Z (2010) The fate of miRNA* strand through evolutionary analysis: implication for degradation as merely carrier strand or potential regulatory molecule? PLoS One 5(6):e11387.  https://doi.org/10.1371/journal.pone.0011387 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ogata A, Furukawa C, Sakurai K, Iba H, Kitade Y, Ueno Y (2010) Biaryl modification of the 5′-terminus of one strand of a microRNA duplex induces strand specificity. Bioorg Med Chem Lett 20(24):7299–7302.  https://doi.org/10.1016/j.bmcl.2010.10.077 CrossRefPubMedGoogle Scholar
  31. 31.
    Hwang HW, Wentzel EA, Mendell JT (2007) A hexanucleotide element directs microRNA nuclear import. Science 315(5808):97–100.  https://doi.org/10.1126/science.1136235 CrossRefPubMedGoogle Scholar
  32. 32.
    Marcon E, Babak T, Chua G, Hughes T, Moens PB (2008) miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosom Res 16(2):243–260.  https://doi.org/10.1007/s10577-007-1190-6 CrossRefGoogle Scholar
  33. 33.
    Kim DH, Saetrom P, Snove O Jr, Rossi JJ (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A 105(42):16230–16235.  https://doi.org/10.1073/pnas.0808830105 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Salmanidis M, Pillman K, Goodall G, Bracken C (2014) Direct transcriptional regulation by nuclear microRNAs. Int J Biochem Cell Biol 54:304–311.  https://doi.org/10.1016/j.biocel.2014.03.010 CrossRefPubMedGoogle Scholar
  35. 35.
    van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circ Res 110(3):496–507.  https://doi.org/10.1161/circresaha.111.247916 CrossRefGoogle Scholar
  36. 36.
    Stenvang J, Kauppinen S (2008) MicroRNAs as targets for antisense-based therapeutics. Expert Opin Biol Ther 8(1):59–81.  https://doi.org/10.1517/14712598.8.1.59 CrossRefPubMedGoogle Scholar
  37. 37.
    Nishimura M, Jung EJ, Shah MY, Lu C, Spizzo R, Shimizu M, Han HD, Ivan C, Rossi S, Zhang X, Nicoloso MS, Wu SY, Almeida MI, Bottsford-Miller J, Pecot CV, Zand B, Matsuo K, Shahzad MM, Jennings NB, Rodriguez-Aguayo C, Lopez-Berestein G, Sood AK, Calin GA (2013) Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment. Cancer Discov 3(11):1302–1315.  https://doi.org/10.1158/2159-8290.cd-13-0159 CrossRefPubMedGoogle Scholar
  38. 38.
    Prakash TP, Bhat B (2007) 2′-Modified oligonucleotides for antisense therapeutics. Curr Top Med Chem 7(7):641–649CrossRefGoogle Scholar
  39. 39.
    van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science (New York, NY) 316(5824):575–579.  https://doi.org/10.1126/science.1139089 CrossRefGoogle Scholar
  40. 40.
    Jopling CL, Schutz S, Sarnow P (2008) Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 4(1):77–85.  https://doi.org/10.1016/j.chom.2008.05.013 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, Dimmeler S (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science (New York, NY) 324(5935):1710–1713.  https://doi.org/10.1126/science.1174381 CrossRefGoogle Scholar
  42. 42.
    Cui H, Zhai J, Ma C (2015) miRLocator: machine learning-based prediction of mature MicroRNAs within plant pre-miRNA sequences. PLoS One 10(11):e0142753.  https://doi.org/10.1371/journal.pone.0142753 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32(Database issue):D109–D111.  https://doi.org/10.1093/nar/gkh023 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73.  https://doi.org/10.1093/nar/gkt1181 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Dai E, Yu X, Zhang Y, Meng F, Wang S, Liu X, Liu D, Wang J, Li X, Jiang W (2014) EpimiR: a database of curated mutual regulation between miRNAs and epigenetic modifications. Database (Oxford) 2014:bau023.  https://doi.org/10.1093/database/bau023 CrossRefGoogle Scholar
  46. 46.
    Kiezun A, Artzi S, Modai S, Volk N, Isakov O, Shomron N (2012) miRviewer: a multispecies microRNA homologous viewer. BMC Res Notes 5:92. https://doi.org/10.1186/1756-0500-5-92 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Van Peer G, Lefever S, Anckaert J, Beckers A, Rihani A, Van Goethem A, Volders PJ, Zeka F, Ongenaert M, Mestdagh P, Vandesompele J (2014) miRBase Tracker: keeping track of microRNA annotation changes. Database (Oxford) 2014:bau080.  https://doi.org/10.1093/database/bau080
  48. 48.
    Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, Newcomb JM, Sempere LF, Flatmark K, Hovig E, Peterson KJ (2015) A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu Rev Genet 49:213–242.  https://doi.org/10.1146/annurev-genet-120213-092023 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gerlach D, Kriventseva EV, Rahman N, Vejnar CE, Zdobnov EM (2009) miROrtho: computational survey of microRNA genes. Nucleic Acids Res 37(Database issue):D111–D117.  https://doi.org/10.1093/nar/gkn707 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Maselli V, Di Bernardo D, Banfi S (2008) CoGemiR: a comparative genomics microRNA database. BMC Genomics 9:457.  https://doi.org/10.1186/1471-2164-9-457 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kaya KD, Karakulah G, Yakicier CM, Acar AC, Konu O (2011) mESAdb: microRNA expression and sequence analysis database. Nucleic Acids Res 39(Database issue):D170–D180.  https://doi.org/10.1093/nar/gkq1256 CrossRefGoogle Scholar
  52. 52.
    Cheng WC, Chung IF, Tsai CF, Huang TS, Chen CY, Wang SC, Chang TY, Sun HJ, Chao JY, Cheng CC, Wu CW, Wang HW (2015) YM500v2: a small RNA sequencing (smRNA-seq) database for human cancer miRNome research. Nucleic Acids Res 43(Database issue):D862–D867.  https://doi.org/10.1093/nar/gku1156 CrossRefPubMedGoogle Scholar
  53. 53.
    Szczesniak MW, Makalowska I (2014) miRNEST 2.0: a database of plant and animal microRNAs. Nucleic Acids Res 42(Database issue):D74–D77.  https://doi.org/10.1093/nar/gkt1156 CrossRefPubMedGoogle Scholar
  54. 54.
    Vergoulis T, Kanellos I, Kostoulas N, Georgakilas G, Sellis T, Hatzigeorgiou A, Dalamagas T (2015) mirPub: a database for searching microRNA publications. Bioinformatics 31(9):1502–1504.  https://doi.org/10.1093/bioinformatics/btu819 CrossRefPubMedGoogle Scholar
  55. 55.
    Zielezinski A, Dolata J, Alaba S, Kruszka K, Pacak A, Swida-Barteczka A, Knop K, Stepien A, Bielewicz D, Pietrykowska H, Sierocka I, Sobkowiak L, Lakomiak A, Jarmolowski A, Szweykowska-Kulinska Z, Karlowski WM (2015) mirEX 2.0 – an integrated environment for expression profiling of plant microRNAs. BMC Plant Biol 15:144.  https://doi.org/10.1186/s12870-015-0533-2 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Gong J, Wu Y, Zhang X, Liao Y, Sibanda VL, Liu W, Guo AY (2014) Comprehensive analysis of human small RNA sequencing data provides insights into expression profiles and miRNA editing. RNA Biol 11(11):1375–1385.  https://doi.org/10.1080/15476286.2014.996465 CrossRefPubMedGoogle Scholar
  57. 57.
    Juzenas S, Venkatesh G, Hubenthal M, Hoeppner MP, Du ZG, Paulsen M, Rosenstiel P, Senger P, Hofmann-Apitius M, Keller A, Kupcinskas L, Franke A, Hemmrich-Stanisak G (2017) A comprehensive, cell specific microRNA catalogue of human peripheral blood. Nucleic Acids Res 45(16):9290–9301.  https://doi.org/10.1093/nar/gkx706 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Barupal JK, Saini AK, Chand T, Meena A, Beniwal S, Suthar JR, Meena N, Kachhwaha S, Kothari SL (2015) ExcellmiRDB for translational genomics: a curated online resource for extracellular microRNAs. OMICS 19(1):24–30.  https://doi.org/10.1089/omi.2014.0106 CrossRefGoogle Scholar
  59. 59.
    Russo F, Di Bella S, Nigita G, Macca V, Lagana A, Giugno R, Pulvirenti A, Ferro A (2012) miRandola: extracellular circulating microRNAs database. PLoS One 7(10):e47786.  https://doi.org/10.1371/journal.pone.0047786 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Yang Q, Qiu C, Yang J, Wu Q, Cui Q (2011) miREnvironment database: providing a bridge for microRNAs, environmental factors and phenotypes. Bioinformatics 27(23):3329–3330.  https://doi.org/10.1093/bioinformatics/btr556 CrossRefGoogle Scholar
  61. 61.
    Gurjar AK, Panwar AS, Gupta R, Mantri SS (2016) PmiRExAt: plant miRNA expression atlas database and web applications. Database (Oxford) 2016:baw060.  https://doi.org/10.1093/database/baw060 CrossRefGoogle Scholar
  62. 62.
    Kumar Gupta A, Kumar M (2015) HPVbase—a knowledgebase of viral integrations, methylation patterns and microRNAs aberrant expression: as potential biomarkers for Human papillomaviruses mediated carcinomas. Sci Rep 5:12522.  https://doi.org/10.1038/srep12522 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou AG (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40(Database issue):D222–D229.  https://doi.org/10.1093/nar/gkr1161 CrossRefPubMedGoogle Scholar
  64. 64.
    Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, Chien CH, Wu MC, Huang CY, Tsou AP, Huang HD (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39(Database issue):D163–D169.  https://doi.org/10.1093/nar/gkq1107 CrossRefPubMedGoogle Scholar
  65. 65.
    Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ, Tsai TR, Ho SY, Jian TY, Wu HY, Chen PR, Lin NC, Huang HT, Yang TL, Pai CY, Tai CS, Chen WL, Huang CY, Liu CC, Weng SL, Liao KW, Hsu WL, Huang HD (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44(D1):D239–D247.  https://doi.org/10.1093/nar/gkv1258 CrossRefPubMedGoogle Scholar
  66. 66.
    Andres-Leon E, Gonzalez Pena D, Gomez-Lopez G, Pisano DG (2015) miRGate: a curated database of human, mouse and rat miRNA-mRNA targets. Database (Oxford) 2015:bav035.  https://doi.org/10.1093/database/bav035 CrossRefGoogle Scholar
  67. 67.
    Yi X, Zhang Z, Ling Y, Xu W, Su Z (2015) PNRD: a plant non-coding RNA database. Nucleic Acids Res 43(Database issue):D982–D989.  https://doi.org/10.1093/nar/gku1162 CrossRefGoogle Scholar
  68. 68.
    Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37(Database issue):D105–D110.  https://doi.org/10.1093/nar/gkn851 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk—database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44(5):839–847.  https://doi.org/10.1016/j.jbi.2011.05.002 CrossRefPubMedGoogle Scholar
  70. 70.
    Lu TP, Lee CY, Tsai MH, Chiu YC, Hsiao CK, Lai LC, Chuang EY (2012) miRSystem: an integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS One 7(8):e42390.  https://doi.org/10.1371/journal.pone.0042390 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Piriyapongsa J, Bootchai C, Ngamphiw C, Tongsima S (2014) microPIR2: a comprehensive database for human-mouse comparative study of microRNA-promoter interactions. Database (Oxford) 2014:bau115.  https://doi.org/10.1093/database/bau115 CrossRefGoogle Scholar
  72. 72.
    Hsu PW, Lin LZ, Hsu SD, Hsu JB, Huang HD (2007) ViTa: prediction of host microRNAs targets on viruses. Nucleic Acids Res 35(Database issue):D381–D385.  https://doi.org/10.1093/nar/gkl1009 CrossRefGoogle Scholar
  73. 73.
    Hsu JB, Chiu CM, Hsu SD, Huang WY, Chien CH, Lee TY, Huang HD (2011) miRTar: an integrated system for identifying miRNA-target interactions in human. BMC Bioinformatics 12:300.  https://doi.org/10.1186/1471-2105-12-300 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41(Web Server issue):W169–W173.  https://doi.org/10.1093/nar/gkt393 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Wang X (2008) miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 14(6):1012–1017.  https://doi.org/10.1261/rna.965408 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43(Database issue):D146–D152.  https://doi.org/10.1093/nar/gku1104 CrossRefPubMedGoogle Scholar
  77. 77.
    Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, Mahaffey S, Rossi S, Calin GA, Bemis L, Theodorescu D (2014) The multiMiR R package and database: integration of microRNA-target interactions along with their disease and drug associations. Nucleic Acids Res 42(17):e133.  https://doi.org/10.1093/nar/gku631 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Wu WS, Tu BW, Chen TT, Hou SW, Tseng JT (2017) CSmiRTar: condition-specific microRNA targets database. PLoS One 12(7):e0181231.  https://doi.org/10.1371/journal.pone.0181231 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Bruno AE, Li L, Kalabus JL, Pan Y, Yu A, Hu Z (2012) miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3′UTRs of human genes. BMC Genomics 13:44.  https://doi.org/10.1186/1471-2164-13-44 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Bhattacharya A, Ziebarth JD, Cui Y (2014) PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res 42(Database issue):D86–D91.  https://doi.org/10.1093/nar/gkt1028 CrossRefPubMedGoogle Scholar
  81. 81.
    Ziebarth JD, Bhattacharya A, Chen A, Cui Y (2012) PolymiRTS Database 2.0: linking polymorphisms in microRNA target sites with human diseases and complex traits. Nucleic Acids Res 40(Database issue):D216–D221.  https://doi.org/10.1093/nar/gkr1026 CrossRefPubMedGoogle Scholar
  82. 82.
    Guo ZW, Xie C, Yang JR, Li JH, Yang JH, Zheng L (2015) MtiBase: a database for decoding microRNA target sites located within CDS and 5′UTR regions from CLIP-Seq and expression profile datasets. Database (Oxford) 2015:bav102.  https://doi.org/10.1093/database/bav102 CrossRefGoogle Scholar
  83. 83.
    Gennarino VA, Sardiello M, Mutarelli M, Dharmalingam G, Maselli V, Lago G, Banfi S (2011) HOCTAR database: a unique resource for microRNA target prediction. Gene 480(1–2):51–58.  https://doi.org/10.1016/j.gene.2011.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Naeem H, Kuffner R, Csaba G, Zimmer R (2010) miRSel: automated extraction of associations between microRNAs and genes from the biomedical literature. BMC Bioinformatics 11:135.  https://doi.org/10.1186/1471-2105-11-135 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Yang Z, Ren F, Liu C, He S, Sun G, Gao Q, Yao L, Zhang Y, Miao R, Cao Y, Zhao Y, Zhong Y, Zhao H (2010) dbDEMC: a database of differentially expressed miRNAs in human cancers. BMC Genomics 11(Suppl 4):S5.  https://doi.org/10.1186/1471-2164-11-S4-S5 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Wang D, Gu J, Wang T, Ding Z (2014) OncomiRDB: a database for the experimentally verified oncogenic and tumor-suppressive microRNAs. Bioinformatics 30(15):2237–2238.  https://doi.org/10.1093/bioinformatics/btu155 CrossRefPubMedGoogle Scholar
  87. 87.
    Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, Dunger I, Fobo G, Frishman G, Montrone C, Theis FJ (2010) PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol 11(1):R6.  https://doi.org/10.1186/gb-2010-11-1-r6 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Sun X, Dong B, Yin L, Zhang R, Du W, Liu D, Shi N, Li A, Liang Y, Mao L (2013) PMTED: a plant microRNA target expression database. BMC Bioinformatics 14:174.  https://doi.org/10.1186/1471-2105-14-174 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Jacobs LA, Bewicke-Copley F, Poolman MG, Pink RC, Mulcahy LA, Baker I, Beaman EM, Brooks T, Caley DP, Cowling W, Currie JM, Horsburgh J, Kenehan L, Keyes E, Leite D, Massa D, McDermott-Rouse A, Samuel P, Wood H, Kadhim M, Carter DR (2013) Meta-analysis using a novel database, miRStress, reveals miRNAs that are frequently associated with the radiation and hypoxia stress-responses. PLoS One 8(11):e80844.  https://doi.org/10.1371/journal.pone.0080844 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Chiang K, Shu J, Zempleni J, Cui J (2015) Dietary MicroRNA Database (DMD): an archive database and analytic tool for food-borne microRNAs. PLoS One 10(6):e0128089.  https://doi.org/10.1371/journal.pone.0128089 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Mooney C, Becker BA, Raoof R, Henshall DC (2016) EpimiRBase: a comprehensive database of microRNA-epilepsy associations. Bioinformatics 32(9):1436–1438.  https://doi.org/10.1093/bioinformatics/btw008 CrossRefGoogle Scholar
  92. 92.
    Paraskevopoulou MD, Vlachos IS, Karagkouni D, Georgakilas G, Kanellos I, Vergoulis T, Zagganas K, Tsanakas P, Floros E, Dalamagas T, Hatzigeorgiou AG (2016) DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res 44(D1):D231–D238.  https://doi.org/10.1093/nar/gkv1270 CrossRefGoogle Scholar
  93. 93.
    Ganguli S, Mitra S, Datta A (2011) Antagomirbase- a putative antagomir database. Bioinformation 7(1):41–43CrossRefGoogle Scholar
  94. 94.
    Friard O, Re A, Taverna D, De Bortoli M, Cora D (2010) CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinformatics 11:435.  https://doi.org/10.1186/1471-2105-11-435 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database issue):D149–D153.  https://doi.org/10.1093/nar/gkm995 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Hsu PW, Huang HD, Hsu SD, Lin LZ, Tsou AP, Tseng CP, Stadler PF, Washietl S, Hofacker IL (2006) miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res 34(Database issue):D135–D139.  https://doi.org/10.1093/nar/gkj135 CrossRefPubMedGoogle Scholar
  97. 97.
    Ritchie W, Flamant S, Rasko JE (2010) mimiRNA: a microRNA expression profiler and classification resource designed to identify functional correlations between microRNAs and their targets. Bioinformatics 26(2):223–227.  https://doi.org/10.1093/bioinformatics/btp649 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37(Database issue):D98–D104.  https://doi.org/10.1093/nar/gkn714 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Bhattacharya A, Cui Y (2016) SomamiR 2.0: a database of cancer somatic mutations altering microRNA-ceRNA interactions. Nucleic Acids Res 44(D1):D1005–D1010.  https://doi.org/10.1093/nar/gkv1220 CrossRefPubMedGoogle Scholar
  100. 100.
    Nam S, Kim B, Shin S, Lee S (2008) miRGator: an integrated system for functional annotation of microRNAs. Nucleic Acids Res 36(Database issue):D159–D164.  https://doi.org/10.1093/nar/gkm829 CrossRefPubMedGoogle Scholar
  101. 101.
    Cho S, Jun Y, Lee S, Choi HS, Jung S, Jang Y, Park C, Kim S, Lee S, Kim W (2011) miRGator v2.0: an integrated system for functional investigation of microRNAs. Nucleic Acids Res 39(Database issue):D158–D162.  https://doi.org/10.1093/nar/gkq1094 CrossRefPubMedGoogle Scholar
  102. 102.
    Yang JH, Li JH, Shao P, Zhou H, Chen YQ, Qu LH (2011) starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39(Database issue):D202–D209.  https://doi.org/10.1093/nar/gkq1056 CrossRefPubMedGoogle Scholar
  103. 103.
    Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42(Database issue):D92–D97.  https://doi.org/10.1093/nar/gkt1248 CrossRefPubMedGoogle Scholar
  104. 104.
    Georgakilas G, Vlachos IS, Zagganas K, Vergoulis T, Paraskevopoulou MD, Kanellos I, Tsanakas P, Dellis D, Fevgas A, Dalamagas T, Hatzigeorgiou AG (2016) DIANA-miRGen v3.0: accurate characterization of microRNA promoters and their regulators. Nucleic Acids Res 44(D1):D190–D195.  https://doi.org/10.1093/nar/gkv1254 CrossRefPubMedGoogle Scholar
  105. 105.
    Paraskevopoulou MD, Vlachos IS, Hatzigeorgiou AG (2016) DIANA-TarBase and DIANA suite tools: studying experimentally supported microRNA targets. Curr Protoc Bioinformatics 55:12.14.11–12.14.18.  https://doi.org/10.1002/cpbi.12 CrossRefGoogle Scholar
  106. 106.
    Hansen TB, Veno MT, Kjems J, Damgaard CK (2014) miRdentify: high stringency miRNA predictor identifies several novel animal miRNAs. Nucleic Acids Res 42(16):e124.  https://doi.org/10.1093/nar/gku598 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Mathelier A, Carbone A (2010) MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics 26(18):2226–2234.  https://doi.org/10.1093/bioinformatics/btq329 CrossRefPubMedGoogle Scholar
  108. 108.
    Gao D, Middleton R, Rasko JE, Ritchie W (2013) miREval 2.0: a web tool for simple microRNA prediction in genome sequences. Bioinformatics 29(24):3225–3226.  https://doi.org/10.1093/bioinformatics/btt545 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    An J, Lai J, Sajjanhar A, Lehman ML, Nelson CC (2014) miRPlant: an integrated tool for identification of plant miRNA from RNA sequencing data. BMC Bioinformatics 15:275.  https://doi.org/10.1186/1471-2105-15-275 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Vlachos IS, Vergoulis T, Paraskevopoulou MD, Lykokanellos F, Georgakilas G, Georgiou P, Chatzopoulos S, Karagkouni D, Christodoulou F, Dalamagas T, Hatzigeorgiou AG (2016) DIANA-mirExTra v2.0: Uncovering microRNAs and transcription factors with crucial roles in NGS expression data. Nucleic Acids Res 44(W1):W128–W134.  https://doi.org/10.1093/nar/gkw455 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Aguiar RR, Ambrosio LA, Sepulveda-Hermosilla G, Maracaja-Coutinho V, Paschoal AR (2016) miRQuest: integration of tools on a Web server for microRNA research. Genet Mol Res 15:1.  https://doi.org/10.4238/gmr.15016861 CrossRefGoogle Scholar
  112. 112.
    Li J, Wang Y, Wang L, Feng W, Luan K, Dai X, Xu C, Meng X, Zhang Q, Liang H (2015) MatPred: computational identification of mature MicroRNAs within novel Pre-MicroRNAs. Biomed Res Int 2015:546763.  https://doi.org/10.1155/2015/546763 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Jamal S, Periwal V, Scaria V (2012) Computational analysis and predictive modeling of small molecule modulators of microRNA. J Cheminform 4(1):16.  https://doi.org/10.1186/1758-2946-4-16 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Grad Y, Aach J, Hayes GD, Reinhart BJ, Church GM, Ruvkun G, Kim J (2003) Computational and experimental identification of C. elegans microRNAs. Mol Cell 11(5):1253–1263CrossRefGoogle Scholar
  115. 115.
    Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17(8):991–1008.  https://doi.org/10.1101/gad.1074403 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299(5612):1540.  https://doi.org/10.1126/science.1080372 CrossRefPubMedGoogle Scholar
  117. 117.
    Lai EC, Tomancak P, Williams RW, Rubin GM (2003) Computational identification of Drosophila microRNA genes. Genome Biol 4(7):R42.  https://doi.org/10.1186/gb-2003-4-7-r42 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Hu LL, Huang Y, Wang QC, Zou Q, Jiang Y (2012) Benchmark comparison of ab initio microRNA identification methods and software. Genet Mol Res 11(4):4525–4538.  https://doi.org/10.4238/2012.October.17.4 CrossRefPubMedGoogle Scholar
  119. 119.
    Terai G, Komori T, Asai K, Kin T (2007) miRRim: a novel system to find conserved miRNAs with high sensitivity and specificity. RNA 13(12):2081–2090.  https://doi.org/10.1261/rna.655107 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Bentwich I (2005) Prediction and validation of microRNAs and their targets. FEBS Lett 579(26):5904–5910.  https://doi.org/10.1016/j.febslet.2005.09.040 CrossRefPubMedGoogle Scholar
  121. 121.
    Oulas A, Boutla A, Gkirtzou K, Reczko M, Kalantidis K, Poirazi P (2009) Prediction of novel microRNA genes in cancer-associated genomic regions—a combined computational and experimental approach. Nucleic Acids Res 37(10):3276–3287.  https://doi.org/10.1093/nar/gkp120 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Nam JW, Kim J, Kim SK, Zhang BT (2006) ProMiR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs. Nucleic Acids Res 34(Web Server issue):W455–W458.  https://doi.org/10.1093/nar/gkl321 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1):21–24.  https://doi.org/10.1016/j.cell.2004.12.031 CrossRefGoogle Scholar
  124. 124.
    Huang TH, Fan B, Rothschild MF, Hu ZL, Li K, Zhao SH (2007) MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinformatics 8:341.  https://doi.org/10.1186/1471-2105-8-341 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Nam JW, Shin KR, Han J, Lee Y, Kim VN, Zhang BT (2005) Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res 33(11):3570–3581.  https://doi.org/10.1093/nar/gki668 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, Showe LC, Showe MK (2006) Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinformatics 22(11):1325–1334.  https://doi.org/10.1093/bioinformatics/btl094 CrossRefPubMedGoogle Scholar
  127. 127.
    Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z (2007) MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 35(Web Server issue):W339–W344.  https://doi.org/10.1093/nar/gkm368 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Jha A, Chauhan R, Mehra M, Singh HR, Shankar R (2012) miR-BAG: bagging based identification of microRNA precursors. PLoS One 7(9):e45782.  https://doi.org/10.1371/journal.pone.0045782 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Chen J, Wang X, Liu B (2016) iMiRNA-SSF: improving the identification of MicroRNA precursors by combining negative sets with different distributions. Sci Rep 6:19062.  https://doi.org/10.1038/srep19062 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26(4):407–415.  https://doi.org/10.1038/nbt1394 CrossRefPubMedGoogle Scholar
  131. 131.
    Tran Vdu T, Tempel S, Zerath B, Zehraoui F, Tahi F (2015) miRBoost: boosting support vector machines for microRNA precursor classification. RNA 21(5):775–785.  https://doi.org/10.1261/rna.043612.113 CrossRefPubMedGoogle Scholar
  132. 132.
    Muller S, Rycak L, Winter P, Kahl G, Koch I, Rotter B (2013) omiRas: a Web server for differential expression analysis of miRNAs derived from small RNA-Seq data. Bioinformatics 29(20):2651–2652.  https://doi.org/10.1093/bioinformatics/btt457 CrossRefPubMedGoogle Scholar
  133. 133.
    Lertampaiporn S, Thammarongtham C, Nukoolkit C, Kaewkamnerdpong B, Ruengjitchatchawalya M (2013) Heterogeneous ensemble approach with discriminative features and modified-SMOTEbagging for pre-miRNA classification. Nucleic Acids Res 41(1):e21.  https://doi.org/10.1093/nar/gks878 CrossRefPubMedGoogle Scholar
  134. 134.
    Song X, Wang M, Chen YP, Wang H, Han P, Sun H (2013) Prediction of pre-miRNA with multiple stem-loops using pruning algorithm. Comput Biol Med 43(5):409–416.  https://doi.org/10.1016/j.compbiomed.2013.02.003 CrossRefPubMedGoogle Scholar
  135. 135.
    Batuwita R, Palade V (2009) microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 25(8):989–995.  https://doi.org/10.1093/bioinformatics/btp107 CrossRefPubMedGoogle Scholar
  136. 136.
    Agarwal S, Vaz C, Bhattacharya A, Srinivasan A (2010) Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM). BMC Bioinformatics 11(Suppl 1):S29.  https://doi.org/10.1186/1471-2105-11-S1-S29 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Chang DT, Wang CC, Chen JW (2008) Using a kernel density estimation based classifier to predict species-specific microRNA precursors. BMC Bioinformatics 9(Suppl 12):S2.  https://doi.org/10.1186/1471-2105-9-s12-s2 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Gkirtzou K, Tsamardinos I, Tsakalides P, Poirazi P (2010) MatureBayes: a probabilistic algorithm for identifying the mature miRNA within novel precursors. PLoS One 5(8):e11843.  https://doi.org/10.1371/journal.pone.0011843 CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, Aransay AM (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37(Web Server issue):W68–W76.  https://doi.org/10.1093/nar/gkp347 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Leclercq M, Diallo AB, Blanchette M (2013) Computational prediction of the localization of microRNAs within their pre-miRNA. Nucleic Acids Res 41(15):7200–7211.  https://doi.org/10.1093/nar/gkt466 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Xuan P, Guo M, Huang Y, Li W, Huang Y (2011) MaturePred: efficient identification of microRNAs within novel plant pre-miRNAs. PLoS One 6(11):e27422.  https://doi.org/10.1371/journal.pone.0027422 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    He C, Li YX, Zhang G, Gu Z, Yang R, Li J, Lu ZJ, Zhou ZH, Zhang C, Wang J (2012) MiRmat: mature microRNA sequence prediction. PLoS One 7(12):e51673.  https://doi.org/10.1371/journal.pone.0051673 CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Muller H, Marzi MJ, Nicassio F (2014) IsomiRage: from functional classification to differential expression of miRNA isoforms. Front Bioeng Biotechnol 2:38.  https://doi.org/10.3389/fbioe.2014.00038 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Sablok G, Milev I, Minkov G, Minkov I, Varotto C, Yahubyan G, Baev V (2013) isomiRex: web-based identification of microRNAs, isomiR variations and differential expression using next-generation sequencing datasets. FEBS Lett 587(16):2629–2634.  https://doi.org/10.1016/j.febslet.2013.06.047 CrossRefPubMedGoogle Scholar
  145. 145.
    Zhang Y, Zang Q, Zhang H, Ban R, Yang Y, Iqbal F, Li A, Shi Q (2016) DeAnnIso: a tool for online detection and annotation of isomiRs from small RNA sequencing data. Nucleic Acids Res 44(W1):W166–W175.  https://doi.org/10.1093/nar/gkw427 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Baras AS, Mitchell CJ, Myers JR, Gupta S, Weng LC, Ashton JM, Cornish TC, Pandey A, Halushka MK (2015) miRge – a multiplexed method of processing small RNA-Seq data to determine MicroRNA entropy. PLoS One 10(11):e0143066.  https://doi.org/10.1371/journal.pone.0143066 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Kuenne C, Preussner J, Herzog M, Braun T, Looso M (2014) MIRPIPE: quantification of microRNAs in niche model organisms. Bioinformatics 30(23):3412–3413.  https://doi.org/10.1093/bioinformatics/btu573 CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Shi J, Dong M, Li L, Liu L, Luz-Madrigal A, Tsonis PA, Del Rio-Tsonis K, Liang C (2015) mirPRo-a novel standalone program for differential expression and variation analysis of miRNAs. Sci Rep 5:14617.  https://doi.org/10.1038/srep14617 CrossRefGoogle Scholar
  149. 149.
    Yang K, Sablok G, Qiao G, Nie Q, Wen X (2017) isomiR2Function: an integrated workflow for identifying MicroRNA variants in plants. Front Plant Sci 8:322.  https://doi.org/10.3389/fpls.2017.00322 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Qian K, Auvinen E, Greco D, Auvinen P (2012) miRSeqNovel: an R based workflow for analyzing miRNA sequencing data. Mol Cell Probes 26(5):208–211.  https://doi.org/10.1016/j.mcp.2012.05.002 CrossRefPubMedGoogle Scholar
  151. 151.
    Rueda A, Barturen G, Lebron R, Gomez-Martin C, Alganza A, Oliver JL, Hackenberg M (2015) sRNAtoolbox: an integrated collection of small RNA research tools. Nucleic Acids Res 43(W1):W467–W473.  https://doi.org/10.1093/nar/gkv555 CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Sun Z, Evans J, Bhagwate A, Middha S, Bockol M, Yan H, Kocher JP (2014) CAP-miRSeq: a comprehensive analysis pipeline for microRNA sequencing data. BMC Genomics 15:423.  https://doi.org/10.1186/1471-2164-15-423 CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Kozakai T, Takahashi M, Higuchi M, Hara T, Saito K, Tanaka Y, Masuko M, Takizawa J, Sone H, Fujii M (2018) MAGI-1 expression is decreased in several types of human T-cell leukemia cell lines, including adult T-cell leukemia. Int J Hematol 107(3):337–344.  https://doi.org/10.1007/s12185-017-2359-1 CrossRefPubMedGoogle Scholar
  154. 154.
    Ronen R, Gan I, Modai S, Sukacheov A, Dror G, Halperin E, Shomron N (2010) miRNAkey: a software for microRNA deep sequencing analysis. Bioinformatics 26(20):2615–2616.  https://doi.org/10.1093/bioinformatics/btq493 CrossRefPubMedGoogle Scholar
  155. 155.
    Cer RZ, Herrera-Galeano JE, Anderson JJ, Bishop-Lilly KA, Mokashi VP (2014) miRNA Temporal Analyzer (mirnaTA): a bioinformatics tool for identifying differentially expressed microRNAs in temporal studies using normal quantile transformation. Gigascience 3:20.  https://doi.org/10.1186/2047-217X-3-20 CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J (2016) miRNet – dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res 44(W1):W135–W141.  https://doi.org/10.1093/nar/gkw288 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Nam S, Li M, Choi K, Balch C, Kim S, Nephew KP (2009) MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res 37(Web Server issue):W356–W362.  https://doi.org/10.1093/nar/gkp294 CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Zhang Z, Jiang L, Wang J, Gu P, Chen M (2015) MTide: an integrated tool for the identification of miRNA-target interaction in plants. Bioinformatics 31(2):290–291.  https://doi.org/10.1093/bioinformatics/btu633 CrossRefPubMedGoogle Scholar
  159. 159.
    Capece V, Garcia Vizcaino JC, Vidal R, Rahman RU, Pena Centeno T, Shomroni O, Suberviola I, Fischer A, Bonn S (2015) Oasis: online analysis of small RNA deep sequencing data. Bioinformatics 31(13):2205–2207.  https://doi.org/10.1093/bioinformatics/btv113 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Fisch KM, Meissner T, Gioia L, Ducom JC, Carland TM, Loguercio S, Su AI (2015) Omics Pipe: a community-based framework for reproducible multi-omics data analysis. Bioinformatics 31(11):1724–1728.  https://doi.org/10.1093/bioinformatics/btv061 CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L, Schwach F, Dalmay T, Moulton V (2012) The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics 28(15):2059–2061.  https://doi.org/10.1093/bioinformatics/bts311 CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Gupta V, Markmann K, Pedersen CN, Stougaard J, Andersen SU (2012) shortran: a pipeline for small RNA-seq data analysis. Bioinformatics 28(20):2698–2700.  https://doi.org/10.1093/bioinformatics/bts496 CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Zhao W, Liu W, Tian D, Tang B, Wang Y, Yu C, Li R, Ling Y, Wu J, Song S, Hu S (2011) wapRNA: a web-based application for the processing of RNA sequences. Bioinformatics 27(21):3076–3077.  https://doi.org/10.1093/bioinformatics/btr504 CrossRefPubMedGoogle Scholar
  164. 164.
    Patra D, Fasold M, Langenberger D, Steger G, Grosse I, Stadler PF (2014) plantDARIO: web based quantitative and qualitative analysis of small RNA-seq data in plants. Front Plant Sci 5:708.  https://doi.org/10.3389/fpls.2014.00708 CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Chae H, Rhee S, Nephew KP, Kim S (2015) BioVLAB-MMIA-NGS: microRNA-mRNA integrated analysis using high-throughput sequencing data. Bioinformatics 31(2):265–267.  https://doi.org/10.1093/bioinformatics/btu614 CrossRefPubMedGoogle Scholar
  166. 166.
    Zhang Y, Xu B, Yang Y, Ban R, Zhang H, Jiang X, Cooke HJ, Xue Y, Shi Q (2012) CPSS: a computational platform for the analysis of small RNA deep sequencing data. Bioinformatics 28(14):1925–1927.  https://doi.org/10.1093/bioinformatics/bts282 CrossRefPubMedGoogle Scholar
  167. 167.
    Yuan T, Huang X, Dittmar RL, Du M, Kohli M, Boardman L, Thibodeau SN, Wang L (2014) eRNA: a graphic user interface-based tool optimized for large data analysis from high-throughput RNA sequencing. BMC Genomics 15:176.  https://doi.org/10.1186/1471-2164-15-176 CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Giurato G, De Filippo MR, Rinaldi A, Hashim A, Nassa G, Ravo M, Rizzo F, Tarallo R, Weisz A (2013) iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq. BMC Bioinformatics 14:362.  https://doi.org/10.1186/1471-2105-14-362 CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Williamson V, Kim A, Xie B, McMichael GO, Gao Y, Vladimirov V (2013) Detecting miRNAs in deep-sequencing data: a software performance comparison and evaluation. Brief Bioinform 14(1):36–45.  https://doi.org/10.1093/bib/bbs010 CrossRefPubMedGoogle Scholar
  170. 170.
    Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40(1):37–52.  https://doi.org/10.1093/nar/gkr688 CrossRefPubMedGoogle Scholar
  171. 171.
    Wang WC, Lin FM, Chang WC, Lin KY, Huang HD, Lin NS (2009) miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics 10:328.  https://doi.org/10.1186/1471-2105-10-328 CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Chen CJ, Servant N, Toedling J, Sarazin A, Marchais A, Duvernois-Berthet E, Cognat V, Colot V, Voinnet O, Heard E, Ciaudo C, Barillot E (2012) ncPRO-seq: a tool for annotation and profiling of ncRNAs in sRNA-seq data. Bioinformatics 28(23):3147–3149.  https://doi.org/10.1093/bioinformatics/bts587 CrossRefPubMedGoogle Scholar
  173. 173.
    Lei J, Sun Y (2014) miR-PREFeR: an accurate, fast and easy-to-use plant miRNA prediction tool using small RNA-Seq data. Bioinformatics 30(19):2837–2839.  https://doi.org/10.1093/bioinformatics/btu380 CrossRefPubMedGoogle Scholar
  174. 174.
    Yang X, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27(18):2614–2615.  https://doi.org/10.1093/bioinformatics/btr430 CrossRefPubMedGoogle Scholar
  175. 175.
    Breakfield NW, Corcoran DL, Petricka JJ, Shen J, Sae-Seaw J, Rubio-Somoza I, Weigel D, Ohler U, Benfey PN (2012) High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome Res 22(1):163–176.  https://doi.org/10.1101/gr.123547.111 CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Cammaerts S, Strazisar M, Dierckx J, Del Favero J, De Rijk P (2016) miRVaS: a tool to predict the impact of genetic variants on miRNAs. Nucleic Acids Res 44(3):e23.  https://doi.org/10.1093/nar/gkv921 CrossRefGoogle Scholar
  177. 177.
    Barenboim M, Zoltick BJ, Guo Y, Weinberger DR (2010) MicroSNiPer: a web tool for prediction of SNP effects on putative microRNA targets. Hum Mutat 31(11):1223–1232.  https://doi.org/10.1002/humu.21349 CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Zorc M, Skok DJ, Godnic I, Calin GA, Horvat S, Jiang Z, Dovc P, Kunej T (2012) Catalog of microRNA seed polymorphisms in vertebrates. PLoS One 7(1):e30737.  https://doi.org/10.1371/journal.pone.0030737 CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Liu C, Zhang F, Li T, Lu M, Wang L, Yue W, Zhang D (2012) MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics 13:661.  https://doi.org/10.1186/1471-2164-13-661 CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Maxwell EK, Campbell JD, Spira A, Baxevanis AD (2015) SubmiRine: assessing variants in microRNA targets using clinical genomic data sets. Nucleic Acids Res 43(8):3886–3898.  https://doi.org/10.1093/nar/gkv256 CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Shi H, Zhang G, Zhou M, Cheng L, Yang H, Wang J, Sun J, Wang Z (2016) Integration of multiple genomic and phenotype data to infer novel miRNA-disease associations. PLoS One 11(2):e0148521.  https://doi.org/10.1371/journal.pone.0148521 CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Lee E, Ito K, Zhao Y, Schadt EE, Irie HY, Zhu J (2016) Inferred miRNA activity identifies miRNA-mediated regulatory networks underlying multiple cancers. Bioinformatics 32(1):96–105.  https://doi.org/10.1093/bioinformatics/btv531 CrossRefPubMedGoogle Scholar
  183. 183.
    Bhattacharya A, Cui Y (2015) miR2GO: comparative functional analysis for microRNAs. Bioinformatics 31(14):2403–2405.  https://doi.org/10.1093/bioinformatics/btv140 CrossRefPubMedGoogle Scholar
  184. 184.
    Bonnal RJ, Rossi RL, Carpi D, Ranzani V, Abrignani S, Pagani M (2015) miRiadne: a web tool for consistent integration of miRNA nomenclature. Nucleic Acids Res 43(W1):W487–W492.  https://doi.org/10.1093/nar/gkv381 CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Pirro S, Minutolo A, Galgani A, Potesta M, Colizzi V, Montesano C (2016) Bioinformatics prediction and experimental validation of MicroRNAs involved in cross-kingdom interaction. J Comput Biol 23(12):976–989.  https://doi.org/10.1089/cmb.2016.0059 CrossRefPubMedGoogle Scholar
  186. 186.
    Busk PK (2014) A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics 15:29.  https://doi.org/10.1186/1471-2105-15-29 CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Jang I, Chang H, Jun Y, Park S, Yang JO, Lee B, Kim W, Kim VN, Lee S (2015) miRseqViewer: multi-panel visualization of sequence, structure and expression for analysis of microRNA sequencing data. Bioinformatics 31(4):596–598.  https://doi.org/10.1093/bioinformatics/btu676 CrossRefPubMedGoogle Scholar
  188. 188.
    Patel P, Ramachandruni SD, Kakrana A, Nakano M, Meyers BC (2016) miTRATA: a web-based tool for microRNA Truncation and Tailing Analysis. Bioinformatics 32(3):450–452.  https://doi.org/10.1093/bioinformatics/btv583 CrossRefPubMedGoogle Scholar
  189. 189.
    Li G, Ross KE, Arighi CN, Peng Y, Wu CH, Vijay-Shanker K (2015) miRTex: a text mining system for miRNA-gene relation extraction. PLoS Comput Biol 11(9):e1004391.  https://doi.org/10.1371/journal.pcbi.1004391 CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157.  https://doi.org/10.1093/nar/gkq1027 CrossRefPubMedGoogle Scholar
  191. 191.
    Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–D144.  https://doi.org/10.1093/nar/gkj112 CrossRefGoogle Scholar
  192. 192.
    Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38(Database issue):D806–D813.  https://doi.org/10.1093/nar/gkp818 CrossRefPubMedGoogle Scholar
  193. 193.
    Li SC, Shiau CK, Lin WC (2008) Vir-Mir db: prediction of viral microRNA candidate hairpins. Nucleic Acids Res 36(Database issue):D184–D189.  https://doi.org/10.1093/nar/gkm610 CrossRefGoogle Scholar
  194. 194.
    Yousef GM (2015) miRSNP-based approach identifies a miRNA that regulates prostate-specific antigen in an allele-specific manner. Cancer Discov 5(4):351–352.  https://doi.org/10.1158/2159-8290.CD-15-0230 CrossRefPubMedGoogle Scholar
  195. 195.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20.  https://doi.org/10.1016/j.cell.2004.12.035 CrossRefPubMedGoogle Scholar
  196. 196.
    Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3(3):e85.  https://doi.org/10.1371/journal.pbio.0030085 CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Manyam G, Ivan C, Calin GA, Coombes KR (2013) targetHub: a programmable interface for miRNA-gene interactions. Bioinformatics 29(20):2657–2658.  https://doi.org/10.1093/bioinformatics/btt439 CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Backes C, Kehl T, Stockel D, Fehlmann T, Schneider L, Meese E, Lenhof HP, Keller A (2017) miRPathDB: a new dictionary on microRNAs and target pathways. Nucleic Acids Res 45(D1):D90–D96.  https://doi.org/10.1093/nar/gkw926 CrossRefGoogle Scholar
  199. 199.
    Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(Database issue):D154–D158.  https://doi.org/10.1093/nar/gkm952 CrossRefGoogle Scholar
  200. 200.
    Yang Z, Wu L, Wang A, Tang W, Zhao Y, Zhao H, Teschendorff AE (2017) dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers. Nucleic Acids Res 45(D1):D812–D818.  https://doi.org/10.1093/nar/gkw1079 CrossRefPubMedGoogle Scholar
  201. 201.
    Xie B, Ding Q, Han H, Wu D (2013) miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics 29(5):638–644.  https://doi.org/10.1093/bioinformatics/btt014 CrossRefGoogle Scholar
  202. 202.
    Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, Paraskevopoulou MD, Prionidis K, Dalamagas T, Hatzigeorgiou AG (2012) DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res 40(Web Server issue):W498–W504.  https://doi.org/10.1093/nar/gks494 CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43(W1):W460–W466.  https://doi.org/10.1093/nar/gkv403 CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2014) HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42(Database issue):D1070–D1074.  https://doi.org/10.1093/nar/gkt1023 CrossRefPubMedGoogle Scholar
  205. 205.
    Hsu SD, Chu CH, Tsou AP, Chen SJ, Chen HC, Hsu PW, Wong YH, Chen YH, Chen GH, Huang HD (2008) miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res 36(Database issue):D165–D169.  https://doi.org/10.1093/nar/gkm1012 CrossRefPubMedGoogle Scholar
  206. 206.
    Zhang S, Yue Y, Sheng L, Wu Y, Fan G, Li A, Hu X, Shangguan M, Wei C (2013) PASmiR: a literature-curated database for miRNA molecular regulation in plant response to abiotic stress. BMC Plant Biol 13:33.  https://doi.org/10.1186/1471-2229-13-33 CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Ruepp A, Kowarsch A, Theis F (2012) PhenomiR: microRNAs in human diseases and biological processes. Methods Mol Biol 822:249–260.  https://doi.org/10.1007/978-1-61779-427-8_17 CrossRefPubMedGoogle Scholar
  208. 208.
    Xue C, Li F, He T, Liu GP, Li Y, Zhang X (2005) Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6:310.  https://doi.org/10.1186/1471-2105-6-310 CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Ng KL, Mishra SK (2007) De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 23(11):1321–1330.  https://doi.org/10.1093/bioinformatics/btm026 CrossRefPubMedGoogle Scholar
  210. 210.
    Huang KY, Lee TY, Teng YC, Chang TH (2015) ViralmiR: a support-vector-machine-based method for predicting viral microRNA precursors. BMC Bioinformatics 16(Suppl 1):S9.  https://doi.org/10.1186/1471-2105-16-s1-s9 CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Zhao D, Wang Y, Luo D, Shi X, Wang L, Xu D, Yu J, Liang Y (2010) PMirP: a pre-microRNA prediction method based on structure-sequence hybrid features. Artif Intell Med 49(2):127–132.  https://doi.org/10.1016/j.artmed.2010.03.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bioinformatics Centre, Institute of Microbial TechnologyCouncil of Scientific and Industrial ResearchChandigarhIndia

Personalised recommendations