Mouse Models for Studying HCV Vaccines and Therapeutic Antibodies

  • Jenna M. Gaska
  • Qiang Ding
  • Alexander PlossEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1911)


In spite of the immense progress in hepatitis C virus (HCV) research, efforts to prevent infection, such as generating a vaccine, have not yet been successful. The high price tag associated with current treatment options for chronic infection and the spike in new infections concurrent with growing opioid abuse are strong motivators for developing effective immunization and understanding neutralizing antibodies’ role in preventing infection. Humanized mice—both human liver chimeras as well as genetically humanized models—are important platforms for testing both possible vaccine candidates as well as antibody-based therapies. This chapter details the variety of ways humanized mouse technology can be employed in pursuit of learning how HCV infection can be prevented.

Key words

Hepatitis C virus Humanized mice Immunization Neutralizing antibodies 



This study is supported by grants from the National Institutes of Health (R01 AI079031, R01 AI107301, R21AI117213 to A.P.), a Research Scholar Award from the American Cancer Society (RSG-15-048-01-MPC to A.P.), a Burroughs Wellcome Fund Award for Investigators in Pathogenesis (to A.P.) and funds from Princeton University. J.M.G. was in part supported by cofunding from NIAID on iNRSA 5T32GM00738 and Q.D. by a postdoctoral fellowship from the New Jersey Commission on Cancer Research.


  1. 1.
    Alter HJ, Holland PV, Morrow AG, Purcell RH, Feinstone SM, Moritsugu Y (1975) Clinical and serological analysis of transfusion-associated hepatitis. Lancet 2:838–841PubMedCrossRefGoogle Scholar
  2. 2.
    Feinstone SM, Kapikian AZ, Purcell RH, Alter HJ, Holland PV (1975) Transfusion-associated hepatitis not due to viral hepatitis type A or B. N Engl J Med 292:767–770PubMedCrossRefGoogle Scholar
  3. 3.
    Alter HJ, Purcell RH, Holland PV, Popper H (1978) Transmissible agent in non-A, non-B hepatitis. Lancet 1:459–463PubMedCrossRefGoogle Scholar
  4. 4.
    Bradley DW, Cook EH, Maynard JE, McCaustland KA, Ebert JW, Dolana GH et al (1979) Experimental infection of chimpanzees with antihemophilic (factor VIII) materials: recovery of virus-like particles associated with non-A, non-B hepatitis. J Med Virol 3:253–269PubMedCrossRefGoogle Scholar
  5. 5.
    Hollinger FB, Gitnick GL, Aach RD, Szmuness W, Mosley JW, Stevens CE et al (1978) Non-A, non-B hepatitis transmission in chimpanzees: a project of the transfusion-transmitted viruses study group. Intervirology 10:60–68PubMedCrossRefGoogle Scholar
  6. 6.
    Tabor E, Gerety RJ, Drucker JA, Seeff LB, Hoofnagle JH, Jackson DR et al (1978) Transmission of non-A, non-B hepatitis from man to chimpanzee. Lancet 1:463–466PubMedCrossRefGoogle Scholar
  7. 7.
    Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M (1989) Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244:359–362CrossRefGoogle Scholar
  8. 8.
    Kuo G, Choo QL, Alter HJ, Gitnick GL, Redeker AG, Purcell RH et al (1989) An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244:362–364PubMedCrossRefGoogle Scholar
  9. 9.
    Polaris Observatory HCV Collaborators (2017) Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol Hepatol 2(3):161–176CrossRefGoogle Scholar
  10. 10.
    Thomson EC, Fleming VM, Main J, Klenerman P, Weber J, Eliahoo J et al (2011) Predicting spontaneous clearance of acute hepatitis C virus in a large cohort of HIV-1-infected men. Gut 60:837–845PubMedCrossRefGoogle Scholar
  11. 11.
    Gerlach JT, Diepolder HM, Zachoval R, Gruener NH, Jung MC, Ulsenheimer A et al (2003) Acute hepatitis C: high rate of both spontaneous and treatment-induced viral clearance. Gastroenterology 125:80–88PubMedCrossRefGoogle Scholar
  12. 12.
    WHO (2016) Guidelines for the screening care and treatment of persons with chronic hepatitis C infection: updated version. WHO guidelines approved by the guidelines review committee. WHO, GenevaGoogle Scholar
  13. 13.
    Smith BD, Morgan RL, Beckett GA, Falck-Ytter Y, Holtzman D, Teo CG et al (2012) Recommendations for the identification of chronic hepatitis C virus infection among persons born during 1945–1965. MMWR Recomm Rep 61:1–32PubMedGoogle Scholar
  14. 14.
    Edlin BR (2011) Perspective: test and treat this silent killer. Nature 474:S18–S19PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Zibbell JE, Iqbal K, Patel RC, Suryaprasad A, Sanders KJ, Moore-Moravian L et al (2015) Increases in hepatitis C virus infection related to injection drug use among persons aged </=30 years – Kentucky, Tennessee, Virginia, and West Virginia, 2006–2012. MMWR Morb Mortal Wkly Rep 64:453–458PubMedPubMedCentralGoogle Scholar
  16. 16.
    Nelson PK, Mathers BM, Cowie B, Hagan H, Des Jarlais D, Horyniak D et al (2011) Global epidemiology of hepatitis B and hepatitis C in people who inject drugs: results of systematic reviews. Lancet 378:571–583PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Magiorkinis G, Sypsa V, Magiorkinis E, Paraskevis D, Katsoulidou A, Belshaw R et al (2013) Integrating phylodynamics and epidemiology to estimate transmission diversity in viral epidemics. PLoS Comput Biol 9:e1002876PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Callaway E (2014) Hepatitis C drugs not reaching poor. Nature 508:295–296PubMedCrossRefGoogle Scholar
  19. 19.
    Trooskin SB, Reynolds H, Kostman JR (2015) Access to costly new hepatitis C drugs: medicine, money, and advocacy. Clin Infect Dis 61:1825–1830PubMedCrossRefGoogle Scholar
  20. 20.
    Beames B, Chavez D, Lanford RE (2001) GB virus B as a model for hepatitis C virus. ILAR J 42:152–160PubMedCrossRefGoogle Scholar
  21. 21.
    Schaluder GG, Dawson GJ, Simons JN, Pilot-Matias TJ, Gutierrez RA, Heynen CA et al (1995) Molecular and serologic analysis in the transmission of the GB hepatitis agents. J Med Virol 46:81–90PubMedCrossRefGoogle Scholar
  22. 22.
    Simons JN, Pilot-Matias TJ, Leary TP, Dawson GJ, Desai SM, Schlauder GG et al (1995) Identification of two flavivirus-like genomes in the GB hepatitis agent. Proc Natl Acad Sci U S A 92:3401–3405PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Bukh J, Apgar CL, Yanagi M (1999) Toward a surrogate model for hepatitis C virus: an infectious molecular clone of the GB virus-B hepatitis agent. Virology 262:470–478PubMedCrossRefGoogle Scholar
  24. 24.
    Lanford RE, Chavez D, Notvall L, Brasky KM (2003) Comparison of tamarins and marmosets as hosts for GBV-B infections and the effect of immunosuppression on duration of viremia. Virology 311:72–80PubMedCrossRefGoogle Scholar
  25. 25.
    Bukh J, Apgar CL, Govindarajan S, Purcell RH (2001) Host range studies of GB virus-B hepatitis agent, the closest relative of hepatitis C virus, in New World monkeys and chimpanzees. J Med Virol 65:694–697PubMedCrossRefGoogle Scholar
  26. 26.
    Takikawa S, Engle RE, Faulk KN, Emerson SU, Purcell RH, Bukh J (2010) Molecular evolution of GB virus B hepatitis virus during acute resolving and persistent infections in experimentally infected tamarins. J Gen Virol 91:727–733PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Li T, Zhu S, Shuai L, Xu Y, Yin S, Bian Y et al (2014) Infection of common marmosets with hepatitis C virus/GB virus-B chimeras. Hepatology 59:789–802PubMedCrossRefGoogle Scholar
  28. 28.
    Zhu S, Li T, Liu B, Xu Y, Sun Y, Wang Y et al (2016) Infection of common marmosets with GB virus B chimeric virus encoding the major nonstructural proteins NS2 to NS4A of hepatitis C virus. J Virol 90:8198–8211PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Burbelo PD, Dubovi EJ, Simmonds P, Medina JL, Henriquez JA, Mishra N et al (2012) Serology-enabled discovery of genetically diverse hepaciviruses in a new host. J Virol 86:6171–6178PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Pfaender S, Cavalleri JM, Walter S, Doerrbecker J, Campana B, Brown RJ et al (2015) Clinical course of infection and viral tissue tropism of hepatitis C virus-like nonprimate hepaciviruses in horses. Hepatology 61:447–459PubMedCrossRefGoogle Scholar
  31. 31.
    Quan PL, Firth C, Conte JM, Williams SH, Zambrana-Torrelio CM, Anthony SJ et al (2013) Bats are a major natural reservoir for hepaciviruses and pegiviruses. Proc Natl Acad Sci U S A 110:8194–8199PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Corman VM, Grundhoff A, Baechlein C, Fischer N, Gmyl A, Wollny R et al (2015) Highly divergent hepaciviruses from African cattle. J Virol 89:5876–5882PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Baechlein C, Fischer N, Grundhoff A, Alawi M, Indenbirken D, Postel A et al (2015) Identification of a novel hepacivirus in domestic cattle from Germany. J Virol 89:7007–7015PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lauck M, Sibley SD, Lara J, Purdy MA, Khudyakov Y, Hyeroba D et al (2013) A novel hepacivirus with an unusually long and intrinsically disordered NS5A protein in a wild Old World primate. J Virol 87:8971–8981PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Li CX, Shi M, Tian JH, Lin XD, Kang YJ, Chen LJ et al (2015) Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife 4:PMID:25633976Google Scholar
  36. 36.
    Drexler JF, Corman VM, Muller MA, Lukashev AN, Gmyl A, Coutard B et al (2013) Evidence for novel hepaciviruses in rodents. PLoS Pathog 9:e1003438PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kapoor A, Simmonds P, Scheel TK, Hjelle B, Cullen JM, Burbelo PD et al (2013) Identification of rodent homologs of hepatitis C virus and pegiviruses. MBio 4:e00216–e00213PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Firth C, Bhat M, Firth MA, Williams SH, Frye MJ, Simmonds P et al (2014) Detection of zoonotic pathogens and characterization of novel viruses carried by commensal Rattus norvegicus in New York City. MBio 5:e01933–e01914PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Billerbeck E, Wolfisberg R, Fahnoe U, Xiao JW, Quirk C, Luna JM et al (2017) Mouse models of acute and chronic hepacivirus infection. Science 357:204–208PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bitzegeio J, Bankwitz D, Hueging K, Haid S, Brohm C, Zeisel MB et al (2010) Adaptation of hepatitis C virus to mouse CD81 permits infection of mouse cells in the absence of human entry factors. PLoS Pathog 6:e1000978PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    von Schaewen M, Dorner M, Hueging K, Foquet L, Gerges S, Hrebikova G et al (2016) Expanding the host range of hepatitis C virus through viral adaptation. MBio 7:e01915-16CrossRefGoogle Scholar
  42. 42.
    Safran M, Kim WY, Kung AL, Horner JW, DePinho RA, Kaelin WG Jr (2003) Mouse reporter strain for noninvasive bioluminescent imaging of cells that have undergone Cre-mediated recombination. Mol Imaging 2:297–302PubMedCrossRefGoogle Scholar
  43. 43.
    Dorner M, Rice CM, Ploss A (2013) Study of hepatitis C virus entry in genetically humanized mice. Methods 59:249–257PubMedCrossRefGoogle Scholar
  44. 44.
    Dorner M, Horwitz JA, Robbins JB, Barry WT, Feng Q, Mu K et al (2011) A genetically humanized mouse model for hepatitis C virus infection. Nature 474:208–211PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Chen J, Zhao Y, Zhang C, Chen H, Feng J, Chi X et al (2014) Persistent hepatitis C virus infections and hepatopathological manifestations in immune-competent humanized mice. Cell Res 24:1050–1066PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ding Q, von Schaewen M, Hrebikova G, Heller B, Sandmann L, Plaas M et al (2017) Mice expressing minimally humanized CD81 and occludin genes support hepatitis C virus uptake in vivo. J Virol 91(4):e01799-16PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, Burton DR et al (2005) Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102:9294–9299PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R et al (1998) Binding of hepatitis C virus to CD81. Science 282:938–941PubMedCrossRefGoogle Scholar
  49. 49.
    Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, Filocamo G et al (2002) The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21:5017–5025PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B et al (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446:801–805PubMedCrossRefGoogle Scholar
  51. 51.
    Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP et al (2009) Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457:882–886PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Dorner M, Horwitz JA, Donovan BM, Labitt RN, Budell WC, Friling T et al (2013) Completion of the entire hepatitis C virus life cycle in genetically humanized mice. Nature 501:237–241PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Li D, von Schaewen M, Wang X, Tao W, Zhang Y, Li L et al (2016) Altered glycosylation patterns increase immunogenicity of a subunit hepatitis C virus vaccine, inducing neutralizing antibodies which confer protection in mice. J Virol 90:10486–10498PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Sandgren EP, Palmiter RD, Heckel JL, Daugherty CC, Brinster RL, Degen JL (1991) Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene. Cell 66:245–256PubMedCrossRefGoogle Scholar
  55. 55.
    Mercer DF, Schiller DE, Elliott JF, Douglas DN, Hao C, Rinfret A et al (2001) Hepatitis C virus replication in mice with chimeric human livers. Nat Med 7:927–933PubMedCrossRefGoogle Scholar
  56. 56.
    Tesfaye A, Stift J, Maric D, Cui Q, Dienes HP, Feinstone SM (2013) Chimeric mouse model for the infection of hepatitis B and C viruses. PLoS One 8:e77298PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E et al (2007) Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat Biotechnol 25:903–910PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    von Schaewen M, Hrebikova G, Ploss A (2016) Generation of human liver chimeric mice for the study of human hepatotropic pathogens. Methods Mol Biol 1438:79–101CrossRefGoogle Scholar
  59. 59.
    Hasegawa M, Kawai K, Mitsui T, Taniguchi K, Monnai M, Wakui M et al (2011) The reconstituted ‘humanized liver’ in TK-NOG mice is mature and functional. Biochem Biophys Res Commun 405:405–410PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kosaka K, Hiraga N, Imamura M, Yoshimi S, Murakami E, Nakahara T et al (2013) A novel TK-NOG based humanized mouse model for the study of HBV and HCV infections. Biochem Biophys Res Commun 441:230–235PubMedCrossRefGoogle Scholar
  61. 61.
    Bility MT, Zhang L, Washburn ML, Curtis TA, Kovalev GI, Su L (2012) Generation of a humanized mouse model with both human immune system and liver cells to model hepatitis C virus infection and liver immunopathogenesis. Nat Protoc 7:1608–1617PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Bility MT, Curtis A, Su L (2014) A chimeric mouse model to study immunopathogenesis of HCV infection. Methods Mol Biol 1213:379–388PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Wilson EM, Bial J, Tarlow B, Bial G, Jensen B, Greiner DL et al (2014) Extensive double humanization of both liver and hematopoiesis in FRGN mice. Stem Cell Res 13:404–412PubMedCrossRefGoogle Scholar
  64. 64.
    Gutti TL, Knibbe JS, Makarov E, Zhang J, Yannam GR, Gorantla S et al (2014) Human hepatocytes and hematolymphoid dual reconstitution in treosulfan-conditioned uPA-NOG mice. Am J Pathol 184:101–109PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Strick-Marchand H, Dusseaux M, Darche S, Huntington ND, Legrand N, Masse-Ranson G et al (2015) A novel mouse model for stable engraftment of a human immune system and human hepatocytes. PLoS One 10:e0119820PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Billerbeck E, Mommersteeg MC, Shlomai A, Xiao JW, Andrus L, Bhatta A et al (2016) Humanized mice efficiently engrafted with fetal hepatoblasts and syngeneic immune cells develop human monocytes and NK cells. J Hepatol 65:334–343PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Washburn ML, Bility MT, Zhang L, Kovalev GI, Buntzman A, Frelinger JA et al (2011) A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 140:1334–1344PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Stoller JZ, Degenhardt KR, Huang L, Zhou DD, Lu MM, Epstein JA (2008) Cre reporter mouse expressing a nuclear localized fusion of GFP and beta-galactosidase reveals new derivatives of Pax3-expressing precursors. Genesis 46:200–204PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC et al (2005) Complete replication of hepatitis C virus in cell culture. Science 309:623–626PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Perkus ME, Limbach K, Paoletti E (1989) Cloning and expression of foreign genes in vaccinia virus, using a host range selection system. J Virol 63:3829–3836PubMedPubMedCentralGoogle Scholar
  71. 71.
    Perkus ME, Piccini A, Lipinskas BR, Paoletti E (1985) Recombinant vaccinia virus: immunization against multiple pathogens. Science 229:981–984PubMedCrossRefGoogle Scholar
  72. 72.
    Youn JW, Hu YW, Tricoche N, Pfahler W, Shata MT, Dreux M et al (2008) Evidence for protection against chronic hepatitis C virus infection in chimpanzees by immunization with replicating recombinant vaccinia virus. J Virol 82:10896–10905PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ralston R, Thudium K, Berger K, Kuo C, Gervase B, Hall J et al (1993) Characterization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia viruses. J Virol 67:6753–6761PubMedPubMedCentralGoogle Scholar
  74. 74.
    Rollier CS, Paranhos-Baccala G, Verschoor EJ, Verstrepen BE, Drexhage JA, Fagrouch Z et al (2007) Vaccine-induced early control of hepatitis C virus infection in chimpanzees fails to impact on hepatic PD-1 and chronicity. Hepatology 45:602–613PubMedCrossRefGoogle Scholar
  75. 75.
    Gomez CE, Perdiguero B, Cepeda MV, Mingorance L, Garcia-Arriaza J, Vandermeeren A et al (2013) High, broad, polyfunctional, and durable T cell immune responses induced in mice by a novel hepatitis C virus (HCV) vaccine candidate (MVA-HCV) based on modified vaccinia virus Ankara expressing the nearly full-length HCV genome. J Virol 87:7282–7300PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Abraham JD, Himoudi N, Kien F, Berland JL, Codran A, Bartosch B et al (2004) Comparative immunogenicity analysis of modified vaccinia Ankara vectors expressing native or modified forms of hepatitis C virus E1 and E2 glycoproteins. Vaccine 22:3917–3928PubMedCrossRefGoogle Scholar
  77. 77.
    Ball JK, Tarr AW, McKeating JA (2014) The past, present and future of neutralizing antibodies for hepatitis C virus. Antivir Res 105:100–111PubMedCrossRefGoogle Scholar
  78. 78.
    Kuiken C, Simmonds P (2009) Nomenclature and numbering of the hepatitis C virus. Methods Mol Biol 510:33–53PubMedCrossRefGoogle Scholar
  79. 79.
    Broering TJ, Garrity KA, Boatright NK, Sloan SE, Sandor F, Thomas WD Jr et al (2009) Identification and characterization of broadly neutralizing human monoclonal antibodies directed against the E2 envelope glycoprotein of hepatitis C virus. J Virol 83:12473–12482PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Flint M, Maidens C, Loomis-Price LD, Shotton C, Dubuisson J, Monk P et al (1999) Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81. J Virol 73:6235–6244PubMedPubMedCentralGoogle Scholar
  81. 81.
    Giang E, Dorner M, Prentoe JC, Dreux M, Evans MJ, Bukh J et al (2012) Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus. Proc Natl Acad Sci U S A 109:6205–6210PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Johansson DX, Voisset C, Tarr AW, Aung M, Ball JK, Dubuisson J et al (2007) Human combinatorial libraries yield rare antibodies that broadly neutralize hepatitis C virus. Proc Natl Acad Sci U S A 104:16269–16274PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Keck ZY, Li TK, Xia J, Gal-Tanamy M, Olson O, Li SH et al (2008) Definition of a conserved immunodominant domain on hepatitis C virus E2 glycoprotein by neutralizing human monoclonal antibodies. J Virol 82:6061–6066PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Keck ZY, Xia J, Wang Y, Wang W, Krey T, Prentoe J et al (2012) Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate. PLoS Pathog 8:e1002653PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Schofield DJ, Bartosch B, Shimizu YK, Allander T, Alter HJ, Emerson SU et al (2005) Human monoclonal antibodies that react with the E2 glycoprotein of hepatitis C virus and possess neutralizing activity. Hepatology 42:1055–1062PubMedCrossRefGoogle Scholar
  86. 86.
    Meunier JC, Russell RS, Goossens V, Priem S, Walter H, Depla E et al (2008) Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1 glycoprotein of hepatitis C virus. J Virol 82:966–973PubMedCrossRefGoogle Scholar
  87. 87.
    Owsianka A, Tarr AW, Juttla VS, Lavillette D, Bartosch B, Cosset FL et al (2005) Monoclonal antibody AP33 defines a broadly neutralizing epitope on the hepatitis C virus E2 envelope glycoprotein. J Virol 79:11095–11104PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Stamataki Z, Coates S, Evans MJ, Wininger M, Crawford K, Dong C et al (2007) Hepatitis C virus envelope glycoprotein immunization of rodents elicits cross-reactive neutralizing antibodies. Vaccine 25:7773–7784PubMedCrossRefGoogle Scholar
  89. 89.
    Naarding MA, Falkowska E, Xiao H, Dragic T (2011) Hepatitis C virus soluble E2 in combination with QuilA and CpG ODN induces neutralizing antibodies in mice. Vaccine 29:2910–2917PubMedCrossRefGoogle Scholar
  90. 90.
    Whidby J, Mateu G, Scarborough H, Demeler B, Grakoui A, Marcotrigiano J (2009) Blocking hepatitis C virus infection with recombinant form of envelope protein 2 ectodomain. J Virol 83:11078–11089PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Frey SE, Houghton M, Coates S, Abrignani S, Chien D, Rosa D et al (2010) Safety and immunogenicity of HCV E1E2 vaccine adjuvanted with MF59 administered to healthy adults. Vaccine 28:6367–6373PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ray R, Meyer K, Banerjee A, Basu A, Coates S, Abrignani S et al (2010) Characterization of antibodies induced by vaccination with hepatitis C virus envelope glycoproteins. J Infect Dis 202:862–866PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Law JL, Chen C, Wong J, Hockman D, Santer DM, Frey SE et al (2013) A hepatitis C virus (HCV) vaccine comprising envelope glycoproteins gpE1/gpE2 derived from a single isolate elicits broad cross-genotype neutralizing antibodies in humans. PLoS One 8:e59776PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Meyer K, Banerjee A, Frey SE, Belshe RB, Ray R (2011) A weak neutralizing antibody response to hepatitis C virus envelope glycoprotein enhances virus infection. PLoS One 6:e23699PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Law M, Maruyama T, Lewis J, Giang E, Tarr AW, Stamataki Z et al (2008) Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat Med 14:25–27PubMedCrossRefGoogle Scholar
  96. 96.
    Clayton RF, Owsianka A, Aitken J, Graham S, Bhella D, Patel AH (2002) Analysis of antigenicity and topology of E2 glycoprotein present on recombinant hepatitis C virus-like particles. J Virol 76:7672–7682PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Desombere I, Fafi-Kremer S, Van Houtte F, Pessaux P, Farhoudi A, Heydmann L et al (2016) Monoclonal anti-envelope antibody AP33 protects humanized mice against a patient-derived hepatitis C virus challenge. Hepatology 63:1120–1134PubMedCrossRefGoogle Scholar
  98. 98.
    Ruwona TB, Giang E, Nieusma T, Law M (2014) Fine mapping of murine antibody responses to immunization with a novel soluble form of hepatitis C virus envelope glycoprotein complex. J Virol 88:10459–10471PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D (2011) Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 481:81–84PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Balazs AB, Bloom JD, Hong CM, Rao DS, Baltimore D (2013) Broad protection against influenza infection by vectored immunoprophylaxis in mice. Nat Biotechnol 31:647–652PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Balazs AB, Ouyang Y, Hong CM, Chen J, Nguyen SM, Rao DS et al (2014) Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat Med 20:296–300PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Deal C, Balazs AB, Espinosa DA, Zavala F, Baltimore D, Ketner G (2014) Vectored antibody gene delivery protects against Plasmodium falciparum sporozoite challenge in mice. Proc Natl Acad Sci U S A 111:12528–12532PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    de Jong YP, Dorner M, Mommersteeg MC, Xiao JW, Balazs AB, Robbins JB et al (2014) Broadly neutralizing antibodies abrogate established hepatitis C virus infection. Sci Transl Med 6:254ra129PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Ji C, Liu Y, Pamulapati C, Bohini S, Fertig G, Schraeml M et al (2015) Prevention of hepatitis C virus infection and spread in human liver chimeric mice by an anti-CD81 monoclonal antibody. Hepatology 61:1136–1144PubMedCrossRefGoogle Scholar
  105. 105.
    Meuleman P, Hesselgesser J, Paulson M, Vanwolleghem T, Desombere I, Reiser H et al (2008) Anti-CD81 antibodies can prevent a hepatitis C virus infection in vivo. Hepatology 48:1761–1768PubMedCrossRefGoogle Scholar
  106. 106.
    Fukasawa M, Nagase S, Shirasago Y, Iida M, Yamashita M, Endo K et al (2015) Monoclonal antibodies against extracellular domains of claudin-1 block hepatitis C virus infection in a mouse model. J Virol 89:4866–4879PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Mailly L, Xiao F, Lupberger J, Wilson GK, Aubert P, Duong FH et al (2015) Clearance of persistent hepatitis C virus infection in humanized mice using a claudin-1-targeting monoclonal antibody. Nat Biotechnol 33:549–554PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Akazawa D, Moriyama M, Yokokawa H, Omi N, Watanabe N, Date T et al (2013) Neutralizing antibodies induced by cell culture-derived hepatitis C virus protect against infection in mice. Gastroenterology 145(447–455):e441–e444Google Scholar
  109. 109.
    Vanwolleghem T, Bukh J, Meuleman P, Desombere I, Meunier JC, Alter H et al (2008) Polyclonal immunoglobulins from a chronic hepatitis C virus patient protect human liver-chimeric mice from infection with a homologous hepatitis C virus strain. Hepatology 47:1846–1855PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lewis Thomas Laboratory, Department of Molecular BiologyPrinceton UniversityPrincetonUSA
  2. 2.School of MedicineTsinghua UniversityBeijingChina

Personalised recommendations