Similarities and Differences Between HCV Pseudoparticle (HCVpp) and Cell Culture HCV (HCVcc) in the Study of HCV

  • Laura Riva
  • Jean DubuissonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1911)


For a long time, the study of the HCV infectious cycle has been a major challenge for researchers because of the difficulties in generating an efficient cell culture system leading to a productive viral infection. The development of HCVpp and later on HCVcc model allowing for functional studies of HCV in cell culture completely revolutionized HCV research. The aim of this review is to provide the reader with a brief overview of the development of these two models. We describe the advantages of each model as well as their limitations in the study of the HCV life cycle, with a particular emphasis on virus entry. A comparison between these two models is presented in terms of virion composition and their use as tools for the characterization of entry factors, envelope glycoprotein functions, and antibody neutralization. We also compare the production and biosafety level of these two types of viral particles. Globally, this review provides a general description of the most adequate applications for HCVpp and HCVcc in HCV research.

Key words

Hepatitis C virus HCVpp HCVcc 



The authors were supported by the French National Agency for Research on AIDS and Viral Hepatitis (ANRS) and the ANR through ERA-NET Infect-ERA program (ANR-13-IFEC-0002-01).


  1. 1.
    Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M (1989) Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244:359–362CrossRefGoogle Scholar
  2. 2.
    Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z et al (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11:791–796CrossRefGoogle Scholar
  3. 3.
    Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC et al (2005) Complete replication of hepatitis C virus in cell culture. Science 309:623–626CrossRefGoogle Scholar
  4. 4.
    Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, Burton DR et al (2005) Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102:9294–9299CrossRefGoogle Scholar
  5. 5.
    Lohmann V, Korner F, Koch J, Herian U, Theilmann L, Bartenschlager R (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110–113CrossRefGoogle Scholar
  6. 6.
    Bartosch B, Dubuisson J, Cosset F-L (2003) Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. J Exp Med 197:633–642CrossRefGoogle Scholar
  7. 7.
    Drummer HE, Maerz A, Poumbourios P (2003) Cell surface expression of functional hepatitis C virus E1 and E2 glycoproteins. FEBS Lett 546:385–390CrossRefGoogle Scholar
  8. 8.
    Hsu M, Zhang J, Flint M, Logvinoff C, Cheng-Mayer C, Rice CM et al (2003) Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci U S A 100:7271–7276CrossRefGoogle Scholar
  9. 9.
    Sherer NM, Lehmann MJ, Jimenez-Soto LF, Ingmundson A, Horner SM, Cicchetti G et al (2003) Visualization of retroviral replication in living cells reveals budding into multivesicular bodies. Traffic 4:785–801CrossRefGoogle Scholar
  10. 10.
    Choo QL, Richman KH, Han JH, Berger K, Lee C, Dong C et al (1991) Genetic organization and diversity of the hepatitis C virus. Proc Natl Acad Sci U S A 88:2451–2455CrossRefGoogle Scholar
  11. 11.
    Kolykhalov AA, Feinstone SM, Rice CM (1996) Identification of a highly conserved sequence element at the 3′ terminus of hepatitis C virus genome RNA. J Virol 70:3363–3371PubMedPubMedCentralGoogle Scholar
  12. 12.
    Kolykhalov AA, Agapov EV, Blight KJ, Mihalik K, Feinstone SM, Rice CM (1997) Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277:570–574CrossRefGoogle Scholar
  13. 13.
    Yanagi M, Purcell RH, Emerson SU, Bukh J (1997) Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. Proc Natl Acad Sci U S A 94:8738–8743CrossRefGoogle Scholar
  14. 14.
    Schinazi R, Halfon P, Marcellin P, Asselah T (2014) HCV direct-acting antiviral agents: the best interferon-free combinations. Liver Int 34(Suppl 1):69–78CrossRefGoogle Scholar
  15. 15.
    Blight KJ, McKeating JA, Rice CM (2002) Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76:13001–13014CrossRefGoogle Scholar
  16. 16.
    Blight KJ, McKeating JA, Marcotrigiano J, Rice CM (2003) Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture. J Virol 77:3181–3190CrossRefGoogle Scholar
  17. 17.
    Ikeda M, Yi M, Li K, Lemon SM (2002) Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J Virol 76:2997–3006CrossRefGoogle Scholar
  18. 18.
    Pietschmann T, Lohmann V, Kaul A, Krieger N, Rinck G, Rutter G et al (2002) Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J Virol 76:4008–4021CrossRefGoogle Scholar
  19. 19.
    Pietschmann T, Zayas M, Meuleman P, Long G, Appel N, Koutsoudakis G et al (2009) Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations. PLoS Pathog 5:e1000475CrossRefGoogle Scholar
  20. 20.
    Murray CL, Jones CT, Rice CM (2008) Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 6:699–708CrossRefGoogle Scholar
  21. 21.
    Kato T, Date T, Miyamoto M, Furusaka A, Tokushige K, Mizokami M et al (2003) Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology 125:1808–1817CrossRefGoogle Scholar
  22. 22.
    Kato T, Furusaka A, Miyamoto M, Date T, Yasui K, Hiramoto J et al (2001) Sequence analysis of hepatitis C virus isolated from a fulminant hepatitis patient. J Med Virol 64:334–339CrossRefGoogle Scholar
  23. 23.
    Zhong J, Gastaminza P, Chung J, Stamataki Z, Isogawa M, Cheng G et al (2006) Persistent hepatitis C virus infection in vitro: coevolution of virus and host. J Virol 80:11082–11093CrossRefGoogle Scholar
  24. 24.
    Kaul A, Woerz I, Meuleman P, Leroux-Roels G, Bartenschlager R (2007) Cell culture adaptation of hepatitis C virus and in vivo viability of an adapted variant. J Virol 81:13168–13179CrossRefGoogle Scholar
  25. 25.
    Russell RS, Meunier J-C, Takikawa S, Faulk K, Engle RE, Bukh J et al (2008) Advantages of a single-cycle production assay to study cell culture-adaptive mutations of hepatitis C virus. Proc Natl Acad Sci U S A 105:4370–4375CrossRefGoogle Scholar
  26. 26.
    Andre P, Komurian-Pradel F, Deforges S, Perret M, Berland JL, Sodoyer M et al (2002) Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol 76:6919–6928CrossRefGoogle Scholar
  27. 27.
    Meunier J-C, Russell RS, Engle RE, Faulk KN, Purcell RH, Emerson SU (2008) Apolipoprotein c1 association with hepatitis C virus. J Virol 82:9647–9656CrossRefGoogle Scholar
  28. 28.
    Merz A, Long G, Hiet M-S, Brugger B, Chlanda P, Andre P et al (2011) Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. J Biol Chem 286:3018–3032CrossRefGoogle Scholar
  29. 29.
    Catanese MT, Uryu K, Kopp M, Edwards TJ, Andrus L, Rice WJ et al (2013) Ultrastructural analysis of hepatitis C virus particles. Proc Natl Acad Sci U S A 110:9505–9510CrossRefGoogle Scholar
  30. 30.
    Lindenbach BD, Meuleman P, Ploss A, Vanwolleghem T, Syder AJ, McKeating JA et al (2006) Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc Natl Acad Sci U S A 103:3805–3809CrossRefGoogle Scholar
  31. 31.
    Wasilewski L, Ray S, Bailey JR (2016) Hepatitis C virus resistance to broadly neutralizing antibodies measured using replication competent virus and pseudoparticles. J Gen Virol 97:2883–2893CrossRefGoogle Scholar
  32. 32.
    Vieyres G, Thomas X, Descamps V, Duverlie G, Patel AH, Dubuisson J (2010) Characterization of the envelope glycoproteins associated with infectious hepatitis C virus. J Virol 84:10159–10168CrossRefGoogle Scholar
  33. 33.
    Op De Beeck A, Voisset C, Bartosch B, Ciczora Y, Cocquerel L, Keck Z et al (2004) Characterization of functional hepatitis C virus envelope glycoproteins. J Virol 78:2994–3002CrossRefGoogle Scholar
  34. 34.
    Flint M, Logvinoff C, Rice CM, McKeating JA (2004) Characterization of infectious retroviral pseudotype particles bearing hepatitis C virus glycoproteins. J Virol 78:6875–6882CrossRefGoogle Scholar
  35. 35.
    Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R et al (1998) Binding of hepatitis C virus to CD81. Science 282:938–941CrossRefGoogle Scholar
  36. 36.
    Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, Filocamo G et al (2002) The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21:5017–5025CrossRefGoogle Scholar
  37. 37.
    Zhang J, Randall G, Higginbottom A, Monk P, Rice CM, McKeating JA (2004) CD81 is required for hepatitis C virus glycoprotein-mediated viral infection. J Virol 78:1448–1455CrossRefGoogle Scholar
  38. 38.
    Bartosch B, Vitelli A, Granier C, Goujon C, Dubuisson J, Pascale S et al (2003) Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem 278:41624–41630CrossRefGoogle Scholar
  39. 39.
    Zeisel MB, Koutsoudakis G, Schnober EK, Haberstroh A, Blum HE, Cosset F-L et al (2007) Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology 46:1722–1731CrossRefGoogle Scholar
  40. 40.
    Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B et al (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446:801–805CrossRefGoogle Scholar
  41. 41.
    Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP et al (2009) Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457:882–886CrossRefGoogle Scholar
  42. 42.
    Li Q, Sodroski C, Lowey B, Schweitzer CJ, Cha H, Zhang F et al (2016) Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A 113:7620–7625CrossRefGoogle Scholar
  43. 43.
    Martin DN, Uprichard SL (2013) Identification of transferrin receptor 1 as a hepatitis C virus entry factor. Proc Natl Acad Sci U S A 110:10777–10782CrossRefGoogle Scholar
  44. 44.
    Ujino S, Nishitsuji H, Hishiki T, Sugiyama K, Takaku H, Shimotohno K (2016) Hepatitis C virus utilizes VLDLR as a novel entry pathway. Proc Natl Acad Sci U S A 113:188–193CrossRefGoogle Scholar
  45. 45.
    Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I, Zona L et al (2011) EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med 17:589–595CrossRefGoogle Scholar
  46. 46.
    Sainz BJ, Barretto N, Martin DN, Hiraga N, Imamura M, Hussain S et al (2012) Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med 18:281–285CrossRefGoogle Scholar
  47. 47.
    Gerold G, Meissner F, Bruening J, Welsch K, Perin PM, Baumert TF et al (2015) Quantitative proteomics identifies serum response factor binding protein 1 as a host factor for hepatitis C virus entry. Cell Rep 12:864–878CrossRefGoogle Scholar
  48. 48.
    Jiang J, Cun W, Wu X, Shi Q, Tang H, Luo G (2012) Hepatitis C virus attachment mediated by apolipoprotein E binding to cell surface heparan sulfate. J Virol 86:7256–7267CrossRefGoogle Scholar
  49. 49.
    Xu Y, Martinez P, Seron K, Luo G, Allain F, Dubuisson J et al (2015) Characterization of hepatitis C virus interaction with heparan sulfate proteoglycans. J Virol 89:3846–3858CrossRefGoogle Scholar
  50. 50.
    Albecka A, Belouzard S, Op de Beeck A, Descamps V, Goueslain L, Bertrand-Michel J et al (2012) Role of low-density lipoprotein receptor in the hepatitis C virus life cycle. Hepatology 55:998–1007CrossRefGoogle Scholar
  51. 51.
    Vieyres G, Dubuisson J, Pietschmann T (2014) Incorporation of hepatitis C virus E1 and E2 glycoproteins: the keystones on a peculiar virion. Viruses 6:1149–1187CrossRefGoogle Scholar
  52. 52.
    Falson P, Bartosch B, Alsaleh K, Tews BA, Loquet A, Ciczora Y et al (2015) Hepatitis C virus envelope glycoprotein E1 forms trimers at the surface of the virion. J Virol 89:10333–10346CrossRefGoogle Scholar
  53. 53.
    Helle F, Vieyres G, Elkrief L, Popescu C-I, Wychowski C, Descamps V et al (2010) Role of N-linked glycans in the functions of hepatitis C virus envelope proteins incorporated into infectious virions. J Virol 84:11905–11915CrossRefGoogle Scholar
  54. 54.
    Urbanowicz RA, McClure CP, King B, Mason CP, Ball JK, Tarr AW (2016) Novel functional hepatitis C virus glycoprotein isolates identified using an optimized viral pseudotype entry assay. J Gen Virol 97:2265–2279CrossRefGoogle Scholar
  55. 55.
    Fénéant L, Potel J, François C, Sané F, Douam F, Belouzard S et al (2015) New insights into the understanding of hepatitis C virus entry and cell-to-cell transmission by using the ionophore monensin a. J Virol 89:8346–8364CrossRefGoogle Scholar
  56. 56.
    Vausselin T, Seron K, Lavie M, Mesalam AA, Lemasson M, Belouzard S et al (2016) Identification of a new benzimidazole derivative as an antiviral against hepatitis C virus. J Virol 90:8422–8434CrossRefGoogle Scholar
  57. 57.
    Perin PM, Haid S, Brown RJP, Doerrbecker J, Schulze K, Zeilinger C et al (2016) Flunarizine prevents hepatitis C virus membrane fusion in a genotype-dependent manner by targeting the potential fusion peptide within E1. Hepatology 63:49–62CrossRefGoogle Scholar
  58. 58.
    Bitzegeio J, Bankwitz D, Hueging K, Haid S, Brohm C, Zeisel MB et al (2010) Adaptation of hepatitis C virus to mouse CD81 permits infection of mouse cells in the absence of human entry factors. PLoS Pathog 6:e1000978CrossRefGoogle Scholar
  59. 59.
    Hopcraft SE, Evans MJ (2015) Selection of a hepatitis C virus with altered entry factor requirements reveals a genetic interaction between the E1 glycoprotein and claudins. Hepatology 62:1059–1069CrossRefGoogle Scholar
  60. 60.
    Cai Z, Zhang C, Chang K-S, Jiang J, Ahn B-C, Wakita T et al (2005) Robust production of infectious hepatitis C virus (HCV) from stably HCV cDNA-transfected human hepatoma cells. J Virol 79:13963–13973CrossRefGoogle Scholar
  61. 61.
    Owsianka A, Tarr AW, Juttla VS, Lavillette D, Bartosch B, Cosset F-L et al (2005) Monoclonal antibody AP33 defines a broadly neutralizing epitope on the hepatitis C virus E2 envelope glycoprotein. J Virol 79:11095–11104CrossRefGoogle Scholar
  62. 62.
    Law M, Maruyama T, Lewis J, Giang E, Tarr AW, Stamataki Z et al (2008) Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat Med 14:25–27CrossRefGoogle Scholar
  63. 63.
    Osburn WO, Snider AE, Wells BL, Latanich R, Bailey JR, Thomas DL et al (2014) Clearance of hepatitis C infection is associated with the early appearance of broad neutralizing antibody responses. Hepatology 59:2140–2151CrossRefGoogle Scholar
  64. 64.
    Gottwein JM, Scheel TKH, Hoegh AM, Lademann JB, Eugen-Olsen J, Lisby G et al (2007) Robust hepatitis C genotype 3a cell culture releasing adapted intergenotypic 3a/2a (S52/JFH1) viruses. Gastroenterology 133:1614–1626CrossRefGoogle Scholar
  65. 65.
    Gottwein JM, Scheel TKH, Jensen TB, Lademann JB, Prentoe JC, Knudsen ML et al (2009) Development and characterization of hepatitis C virus genotype 1-7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs. Hepatology 49:364–377CrossRefGoogle Scholar
  66. 66.
    Scheel TKH, Gottwein JM, Carlsen THR, Li Y-P, Jensen TB, Spengler U et al (2011) Efficient culture adaptation of hepatitis C virus recombinants with genotype-specific core-NS2 by using previously identified mutations. J Virol 85:2891–2906CrossRefGoogle Scholar
  67. 67.
    Keck Z, Xia J, Wang Y, Wang W, Krey T, Prentoe J et al (2012) Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate. PLoS Pathog 8:e1002653CrossRefGoogle Scholar
  68. 68.
    Carlsen THR, Pedersen J, Prentoe JC, Giang E, Keck Z-Y, Mikkelsen LS et al (2014) Breadth of neutralization and synergy of clinically relevant human monoclonal antibodies against HCV genotypes 1a, 1b, 2a, 2b, 2c, and 3a. Hepatology 60:1551–1562CrossRefGoogle Scholar
  69. 69.
    Li Y-P, Ramirez S, Jensen SB, Purcell RH, Gottwein JM, Bukh J (2012) Highly efficient full-length hepatitis C virus genotype 1 (strain TN) infectious culture system. Proc Natl Acad Sci U S A 109:19757–19762CrossRefGoogle Scholar
  70. 70.
    Li Y-P, Ramirez S, Mikkelsen L, Bukh J (2015) Efficient infectious cell culture systems of the hepatitis C virus (HCV) prototype strains HCV-1 and H77. J Virol 89:811–823CrossRefGoogle Scholar
  71. 71.
    Ramirez S, Li Y-P, Jensen SB, Pedersen J, Gottwein JM, Bukh J (2014) Highly efficient infectious cell culture of three hepatitis C virus genotype 2b strains and sensitivity to lead protease, nonstructural protein 5A, and polymerase inhibitors. Hepatology 59:395–407CrossRefGoogle Scholar
  72. 72.
    Ramirez S, Mikkelsen LS, Gottwein JM, Bukh J (2016) Robust HCV genotype 3a infectious cell culture system permits identification of escape variants with resistance to Sofosbuvir. Gastroenterology 151:973–985CrossRefGoogle Scholar
  73. 73.
    Fauvelle C, Felmlee DJ, Crouchet E, Lee J, Heydmann L, Lefevre M et al (2016) Apolipoprotein E mediates evasion from hepatitis C virus neutralizing antibodies. Gastroenterology 150:206–217CrossRefGoogle Scholar
  74. 74.
    Keck Z, Angus AGN, Wang W, Lau P, Wang Y, Gatherer D et al (2014) Non-random escape pathways from a broadly neutralizing human monoclonal antibody map to a highly conserved region on the hepatitis C virus E2 glycoprotein encompassing amino acids 412-423. PLoS Pathog 10:e1004297CrossRefGoogle Scholar
  75. 75.
    Gal-Tanamy M, Keck Z-Y, Yi M, McKeating JA, Patel AH, Foung SKH et al (2008) In vitro selection of a neutralization-resistant hepatitis C virus escape mutant. Proc Natl Acad Sci U S A 105:19450–19455CrossRefGoogle Scholar
  76. 76.
    Dorner M, Horwitz JA, Robbins JB, Barry WT, Feng Q, Mu K et al (2011) A genetically humanized mouse model for hepatitis C virus infection. Nature 474:208–211CrossRefGoogle Scholar
  77. 77.
    Dorner M, Horwitz JA, Donovan BM, Labitt RN, Budell WC, Friling T et al (2013) Completion of the entire hepatitis C virus life cycle in genetically humanized mice. Nature 501:237–241CrossRefGoogle Scholar
  78. 78.
    de Jong YP, Dorner M, Mommersteeg MC, Xiao JW, Balazs AB, Robbins JB et al (2014) Broadly neutralizing antibodies abrogate established hepatitis C virus infection. Sci Transl Med 6:254ra129CrossRefGoogle Scholar
  79. 79.
    Steinmann E, Brohm C, Kallis S, Bartenschlager R, Pietschmann T (2008) Efficient trans-encapsidation of hepatitis C virus RNAs into infectious virus-like particles. J Virol 82:7034–7046CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CIIL–Centre d’Infection et d’Immunité de Lille, Institut Pasteur de Lille, U1019-UMR 8204, Univ. Lille, CNRS, Inserm, CHU LilleLilleFrance

Personalised recommendations