Investigating Hepatitis C Virus Infection Using Super-Resolution Microscopy

  • Pedro Matos Pereira
  • Caron Jacobs
  • Joe GroveEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1911)


Super-resolution microscopy (SRM) can provide a window on the nanoscale events of virus replication. Here we describe a protocol for imaging hepatitis C virus-infected cells using localization SRM. We provide details on sample preparation, immunostaining, data collection, and super-resolution image reconstruction. We have made all efforts to generalize the protocol to make it accessible to all budding super-resolution microscopists.

Key words

Microscopy Super-resolution Imaging Virus Hepatitis 



We would like to thank Ricardo Henriques and Lucas Walker for advice and technical support. JG is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (107653/Z/15/Z). PMP is supported by a Biotechnology and Biological Sciences Research Council grant (BB/M022374/1). CJ is a Commonwealth Scholar, funded by the UK government. The imaging systems used in this work were funded by the Medical Research Council (MR/K015826/1).


  1. 1.
    Grove J (2014) Super-resolution microscopy: a virus' eye view of the cell. Viruses 6:1365–1378CrossRefGoogle Scholar
  2. 2.
    Sydor AM, Czymmek KJ, Puchner EM, Mennella V (2015) Super-resolution microscopy: from single molecules to supramolecular assemblies. Trends Cell Biol 25:730–748CrossRefGoogle Scholar
  3. 3.
    Galbraith CG, Galbraith JA (2011) Super-resolution microscopy at a glance. J Cell Sci 124:1607–1611CrossRefGoogle Scholar
  4. 4.
    Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753CrossRefGoogle Scholar
  5. 5.
    Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645CrossRefGoogle Scholar
  6. 6.
    Holm T, Klein T, Löschberger A et al (2014) A blueprint for cost-efficient localization microscopy. ChemPhysChem 15:651–654CrossRefGoogle Scholar
  7. 7.
    Sage D, Kirshner H, Pengo T et al (2015) Quantitative evaluation of software packages for single-molecule localization microscopy. Nat Methods 12:717–724CrossRefGoogle Scholar
  8. 8.
    Gustafsson N, Culley S, Ashdown G et al (2016) Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat Commun 7:12471CrossRefGoogle Scholar
  9. 9.
    Lindenbach BD, Evans MJ, Syder AJ et al (2005) Complete replication of hepatitis C virus in cell culture. Science 309:623–626CrossRefGoogle Scholar
  10. 10.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  11. 11.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefGoogle Scholar
  12. 12.
    Zhang M, Chang H, Zhang Y et al (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9:727–729CrossRefGoogle Scholar
  13. 13.
    Uno S-N, Tiwari DK, Kamiya M et al (2015) A guide to use photocontrollable fluorescent proteins and synthetic smart fluorophores for nanoscopy. Microscopy 64:263–277CrossRefGoogle Scholar
  14. 14.
    Dempsey GT, Vaughan JC, Chen KH et al (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8:1027–1036CrossRefGoogle Scholar
  15. 15.
    Durisic N, Cuervo LL, Lakadamyali M (2014) Quantitative super-resolution microscopy: pitfalls and strategies for image analysis. Curr Opin Chem Biol 20C:22–28CrossRefGoogle Scholar
  16. 16.
    Durisic N, Laparra-Cuervo L, Sandoval-Álvarez Á et al (2014) Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat Methods 11:156–162CrossRefGoogle Scholar
  17. 17.
    Metcalf DJ, Edwards R, Kumarswami N, Knight AE (2013) Test samples for optimizing STORM super-resolution microscopy. J Vis Exp 79.
  18. 18.
    Ji C, Lou X (2016) Single-molecule Super-resolution Imaging of Phosphatidylinositol 4,5-bisphosphate in the Plasma Membrane with Novel Fluorescent Probes. J Vis Exp 116.
  19. 19.
    Paul D, Madan V, Bartenschlager R (2014) Hepatitis C Virus RNA Replication and Assembly: Living on the Fat of the Land. Cell Host Microbe 16:569–579CrossRefGoogle Scholar
  20. 20.
    Wang H, Tai AW (2016) Mechanisms of Cellular Membrane Reorganization to Support Hepatitis C Virus Replication. Viruses 8:e142CrossRefGoogle Scholar
  21. 21.
    Romero-Brey I, Merz A, Chiramel A et al (2012) Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog 8:e1003056CrossRefGoogle Scholar
  22. 22.
    Camus G, Herker E, Modi AA et al (2013) Diacylglycerol acyltransferase-1 localizes hepatitis C virus NS5A protein to lipid droplets and enhances NS5A interaction with the viral capsid core. J Biol Chem 288:9915–9923CrossRefGoogle Scholar
  23. 23.
    Tam J, Cordier GA, Borbely JS et al (2014) Cross-talk-free multi-color STORM imaging using a single fluorophore. PLoS One 9:e101772CrossRefGoogle Scholar
  24. 24.
    Valley CC, Liu S, Lidke DS, Lidke KA (2015) Sequential Superresolution Imaging of Multiple Targets Using a Single Fluorophore. PLoS One 10:e0123941CrossRefGoogle Scholar
  25. 25.
    Shroff H, Galbraith CG, Galbraith JA et al (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci U S A 104:20308–20313CrossRefGoogle Scholar
  26. 26.
    Lelek M, Di Nunzio F, Henriques R et al (2012) Superresolution imaging of HIV in infected cells with FlAsH-PALM. Proc Natl Acad Sci U S A 109:8564–8569CrossRefGoogle Scholar
  27. 27.
    Pereira PM, Almada P, Henriques R (2015) High-content 3D multicolor super-resolution localization microscopy. Methods Cell Biol 125:95–117CrossRefGoogle Scholar
  28. 28.
    Chandradoss SD, Haagsma AC, Lee YK et al (2014) Surface passivation for single-molecule protein studies. J Vis Exp 86.
  29. 29.
    Whelan DR, Bell TDM (2015) Image artifacts in Single Molecule Localization Microscopy: why optimization of sample preparation protocols matters. Sci Rep 5:7924CrossRefGoogle Scholar
  30. 30.
    Tanaka KAK, Suzuki KGN, Shirai YM et al (2010) Membrane molecules mobile even after chemical fixation. Nat Methods 7:865–866CrossRefGoogle Scholar
  31. 31.
    Stone MB, Veatch SL (2014) Far-red organic fluorophores contain a fluorescent impurity. ChemPhysChem 15:2240–2246CrossRefGoogle Scholar
  32. 32.
    Nahidiazar L, Agronskaia AV, Broertjes J et al (2016) Optimizing imaging conditions for demanding multi-color super resolution localization microscopy. PLoS One 11:e0158884CrossRefGoogle Scholar
  33. 33.
    Barna L, Dudok B, Miczán V et al (2016) Correlated confocal and super-resolution imaging by VividSTORM. Nat Protoc 11:163–183CrossRefGoogle Scholar
  34. 34.
    van de Linde S, Sauer M (2014) How to switch a fluorophore: from undesired blinking to controlled photoswitching. Chem Soc Rev 43:1076–1087CrossRefGoogle Scholar
  35. 35.
    Fox-Roberts P, Marsh R, Pfisterer K et al (2017) Local dimensionality determines imaging speed in localization microscopy. Nat Commun 8:13558CrossRefGoogle Scholar
  36. 36.
    Ovesny M, Křižek P, Borkovec J et al (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389–2390CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Quantitative Imaging and Nanobiophysics Group, MRC Laboratory for Molecular Cell Biology, Department of Cell and Developmental BiologyUniversity College LondonLondonUK
  2. 2.Division of Infection and Immunity, Institute of Immunity and TransplantationUniversity College LondonLondonUK

Personalised recommendations