Urinary Cell-Free DNA: Isolation, Quantification, and Quality Assessment

  • Valentina Casadio
  • Samanta Salvi
Part of the Methods in Molecular Biology book series (MIMB, volume 1909)


Urine cell-free DNA is an important source of diagnostic markers for different diseases (e.g., cancer and prenatal diagnosis). It is important to achieve a simple and fast protocol to maximize the recovery of DNA from urine supernatant and to assess its quality. Here we describe a simple approach from urine collection to DNA quality assessment for downstream analyses.

Key words

Urine Cell-free DNA Isolation Quantification Quality Protocol 


  1. 1.
    Ponti G, Maccaferri M, Manfredini M et al (2018) The value of fluorimetry (Qubit) and spectrophotometry (NanoDrop) in the quantification of cell-free DNA (cfDNA) in malignant melanoma and prostate cancer patients. Clin Chim Acta 479:14–19CrossRefGoogle Scholar
  2. 2.
    Bartels S, Persing S, Hasemeier B et al (2017) Molecular analysis of circulating cell-free DNA from lung cancer patients in routine laboratory practice: a cross-platform comparison of three different molecular methods for mutation detection. J Mol Diagn 19(5):722–732CrossRefGoogle Scholar
  3. 3.
    Lu T, Li J (2017) Clinical applications of urinary cell-free DNA in cancer: current insights and promising future. Am J Cancer Res 7(11):2318–2332PubMedPubMedCentralGoogle Scholar
  4. 4.
    Salvi S, Martignano F, Molinari C et al (2016) The potential use of urine cell free DNA as a marker for cancer. Expert Rev Mol Diagn 16(12):1283–1290CrossRefGoogle Scholar
  5. 5.
    Salvi S, Gurioli G, Martignano F et al (2015) Urine cell-free DNA integrity analysis for early detection of prostate cancer patients. Dis Markers 2015:574120CrossRefGoogle Scholar
  6. 6.
    Casadio V, Calistri D, Tebaldi M et al (2013) Urine cell-free DNA integrity as a marker for early bladder cancer diagnosis: preliminary data. Urol Oncol 31(8):1744–1750CrossRefGoogle Scholar
  7. 7.
    Sands J, Li Q, Hornberger J (2017) Urine circulating-tumor DNA (ctDNA) detection of acquired EGFR T790M mutation in non-small-cell lung cancer: an outcomes and total cost-of-care analysis. Lung Cancer 110:19–25CrossRefGoogle Scholar
  8. 8.
    Botezatu I, Serdyuk O, Potapova G et al (2000) Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin Chem 46(8 Pt 1):1078–1084PubMedPubMedCentralGoogle Scholar
  9. 9.
    Majer S, Bauer M, Magnet E, Strele A et al (2007) Maternal urine for prenatal diagnosis—an analysis of cell-free fetal DNA in maternal urine and plasma in the third trimester. Prenat Diagn 27(13):1219–1223CrossRefGoogle Scholar
  10. 10.
    Tsui NB, Jiang P, Chow KC et al (2012) High resolution size analysis of fetal DNA in the urine of pregnant women by paired-end massively parallel sequencing. PLoS One 7(10):e48319CrossRefGoogle Scholar
  11. 11.
    Lin SY, Linehan JA, Wilson TG et al (2017) Emerging utility of urinary cell-free nucleic acid biomarkers for prostate, bladder, and renal cancers. Eur Urol Focus 3(2–3):265–272CrossRefGoogle Scholar
  12. 12.
    Casadio V, Salvi S, Martignano F et al (2017) Cell-free DNA integrity analysis in urine samples. J Vis Exp (119)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Valentina Casadio
    • 1
  • Samanta Salvi
    • 1
  1. 1.Biosciences LaboratoryIstituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCSMeldolaItaly

Personalised recommendations