Advertisement

Urinary Cell-Free DNA: Potential and Applications

  • Samanta SalviEmail author
  • Valentina Casadio
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1909)

Abstract

Urine could be a convenient source of biomarkers for different diseases and clinical applications, mostly for cancer diagnosis, prognosis, treatment monitoring, and prenatal diagnosis. The ultra-noninvasive sampling and the possibility to analyze large volume are the main undisputed advantages of urine-based protocols. Recent and comprehensive studies showed that urinary cell-free DNA (ucfDNA) is informative to identify the genomic signature of patients, resulting in a huge tool to track the tumor evolution and for personalized medicine in urological and non-urological cancer.

In this chapter, we reported the main published evidences on ucfDNA, with the aim at discussing its promising and translatable role in clinical practices.

Key words

Urinary cell-free DNA Urine Cancer diagnosis Cancer monitoring Fetal urinary cell-free DNA 

References

  1. 1.
    Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6(224):224ra24CrossRefGoogle Scholar
  2. 2.
    Lu T, Li J (2017) Clinical applications of urinary cell-free DNA in cancer: current insights and promising future. Am J Cancer Res 7(11):2318–2332PubMedPubMedCentralGoogle Scholar
  3. 3.
    Botezatu I, Serdyuk O, Potapova G et al (2000) Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin Chem 46(8 Pt 1):1078–1084PubMedGoogle Scholar
  4. 4.
    Tencer J, Frick IM, Oquist BW et al (1998) Size-selectivity of the glomerular barrier to high molecular weight proteins: upper size limitations of shunt pathways. Kidney Int 53(3):709–715CrossRefGoogle Scholar
  5. 5.
    Su YH, Wang M, Brenner DE et al (2004) Human urine contains small, 150 to 250 nucleotide-sized, soluble DNA derived from the circulation and may be useful in the detection of colorectal cancer. J Mol Diagn 6(2):101–107CrossRefGoogle Scholar
  6. 6.
    Casadio V, Calistri D, Tebaldi M et al (2013) Urine cell-free DNA integrity as a marker for early bladder cancer diagnosis: preliminary data. Urol Oncol 31(8):1744–1750CrossRefGoogle Scholar
  7. 7.
    Togneri FS, Ward DG, Foster JM et al (2016) Genomic complexity of urothelial bladder cancer revealed in urinary cfDNA. Eur J Hum Genet 24(8):1167–1174CrossRefGoogle Scholar
  8. 8.
    Li F, Huang J, Ji D et al (2017) Utility of urinary circulating tumor DNA for EGFR mutation detection in different stages of non-small cell lung cancer patients. Clin Transl Oncol 19(10):1283–1291CrossRefGoogle Scholar
  9. 9.
    Burnham P, Dadhania D, Heyang M et al (2018) Urinary cell-free DNA is a versatile analyte for monitoring infections of the urinary tract. Nat Commun 9(1):2412CrossRefGoogle Scholar
  10. 10.
    Su YH, Song J, Wang Z et al (2008) Removal of high-molecular-weight DNA by carboxylated magnetic beads enhances the detection of mutated K-ras DNA in urine. Ann N Y Acad Sci 1137:82–91CrossRefGoogle Scholar
  11. 11.
    Guerrero-Preston R, Valle BL, Jedlicka A et al (2016) Molecular triage of premalignant lesions in liquid-based cervical cytology and circulating cell-free DNA from urine, using a panel of methylated human papilloma virus and host genes. Cancer Prev Res (Phila) 9(12):915–924CrossRefGoogle Scholar
  12. 12.
    Chang HW, Tsui KH, Shen LC et al (2007) Urinary cell-free DNA as a potential tumor marker for bladder cancer. Int J Biol Markers 22(4):287–294CrossRefGoogle Scholar
  13. 13.
    Melkonyan HS, Feaver WJ, Meyer E et al (2008) Transrenal nucleic acids: from proof of principle to clinical tests. Ann N Y Acad Sci 1137:73–81CrossRefGoogle Scholar
  14. 14.
    Husain H, Melnikova VO, Kosco K et al (2017) Monitoring daily dynamics of early tumor response to targeted therapy by detecting circulating tumor DNA in urine. Clin Cancer Res 23(16):4716–4723CrossRefGoogle Scholar
  15. 15.
    Tsui NB, Jiang P, Chow KC et al (2012) High resolution size analysis of fetal DNA in the urine of pregnant women by paired-end massively parallel sequencing. PLoS One 7(10):e48319CrossRefGoogle Scholar
  16. 16.
    Vaara ST, Lakkisto P, Immonen K et al (2016) Urinary biomarkers indicative of apoptosis and acute kidney injury in the critically ill. PLoS One 11(2):e0149956CrossRefGoogle Scholar
  17. 17.
    Yao W, Mei C, Nan X et al (2016) Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: a qualitative study. Gene 590(1):142–148CrossRefGoogle Scholar
  18. 18.
    Zancan M, Galdi F, Di Tonno F et al (2009) Evaluation of cell-free DNA in urine as a marker for bladder cancer diagnosis. Int J Biol Markers 24(3):147–155CrossRefGoogle Scholar
  19. 19.
    Streleckiene G, Reid HM, Arnold N et al (2018) Quantifying cell free DNA in urine: comparison between commercial kits, impact of gender and inter-individual variation. BioTechniques 64(5):225–230CrossRefGoogle Scholar
  20. 20.
    Ghanjati F, Beermann A, Hermanns T et al (2014) Unreserved application of epigenetic methods to define differences of DNA methylation between urinary cellular and cell-free DNA. Cancer Biomark 14(5):295–302CrossRefGoogle Scholar
  21. 21.
    Xia Y, Huang CC, Dittmar R et al (2016) Copy number variations in urine cell free DNA as biomarkers in advanced prostate cancer. Oncotarget 7(24):35818–35831CrossRefGoogle Scholar
  22. 22.
    Su YH, Wang M, Brenner DE et al (2008) Detection of mutated K-ras DNA in urine, plasma, and serum of patients with colorectal carcinoma or adenomatous polyps. Ann N Y Acad Sci 1137:197–206CrossRefGoogle Scholar
  23. 23.
    Utting M, Werner W, Dahse R et al (2002) Microsatellite analysis of free tumor DNA in urine, serum, and plasma of patients: a minimally invasive method for the detection of bladder cancer. Clin Cancer Res 8(1):35–40PubMedGoogle Scholar
  24. 24.
    Bryzgunova OE, Morozkin ES, Yarmoschuk SV et al (2008) Methylation-specific sequencing of GSTP1 gene promoter in circulating/extracellular DNA from blood and urine of healthy donors and prostate cancer patients. Ann N Y Acad Sci 1137:222–225CrossRefGoogle Scholar
  25. 25.
    Chen S, Zhao J, Cui L et al (2017) Urinary circulating DNA detection for dynamic tracking of EGFR mutations for NSCLC patients treated with EGFR-TKIs. Clin Transl Oncol 19(3):332–340CrossRefGoogle Scholar
  26. 26.
    Shi XQ, Xue WH, Zhao SF et al (2017) Dynamic tracing for epidermal growth factor receptor mutations in urinary circulating DNA in gastric cancer patients. Tumour Biol 39(2):101042831769168CrossRefGoogle Scholar
  27. 27.
    Fujii T, Barzi A, Sartore-Bianchi A et al (2017) Mutation-enrichment next-generation sequencing for quantitative detection of KRAS mutations in urine cell-free DNA from patients with advanced cancers. Clin Cancer Res 23(14):3657–3666CrossRefGoogle Scholar
  28. 28.
    Hayward J, Chitty LS (2018) Beyond screening for chromosomal abnormalities: advances in non-invasive diagnosis of single gene disorders and fetal exome sequencing. Semin Fetal Neonatal Med 23(2):94–101CrossRefGoogle Scholar
  29. 29.
    Lo YM, Zhang J, Leung TN et al (1999) Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 64(1):218–224CrossRefGoogle Scholar
  30. 30.
    Koide K, Sekizawa A, Iwasaki M et al (2005) Fragmentation of cell-free fetal DNA in plasma and urine of pregnant women. Prenat Diagn 25(7):604–607CrossRefGoogle Scholar
  31. 31.
    Majer S, Bauer M, Magnet E et al (2007) Maternal urine for prenatal diagnosis—an analysis of cell-free fetal DNA in maternal urine and plasma in the third trimester. Prenat Diagn 27(13):1219–1223CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biosciences LaboratoryIstituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCSMeldolaItaly

Personalised recommendations