Advertisement

Quantitative Methylation-Specific PCR: A Simple Method for Studying Epigenetic Modifications of Cell-Free DNA

  • Luca Sigalotti
  • Alessia Covre
  • Francesca Colizzi
  • Elisabetta FrattaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1909)

Abstract

Aberrant DNA methylation of cell-free circulating DNA (cfDNA) has recently gained attention for its use as biomarker in cancer diagnosis, prognosis, and prediction of therapeutic response. Quantification of cfDNA methylation levels requires methods with high sensitivity and specificity due to low amounts of cfDNA available in plasma, high degradation of cfDNA, and/or contamination with genomic DNA. To date, several approaches for measuring cfDNA methylation have been established, including quantitative methylation-specific PCR (qMSP), which represents a simple, fast, and cost-effective technique that can be easily implemented into clinical practice. In this chapter, we provide a detailed protocol for SYBR Green qMSP analysis which is currently used in our laboratory for cfDNA methylation detection. Useful information regarding successful qMSP primers design are also provided.

Key words

Circulating cell-free DNA DNA methylation Bisulfite conversion Quantitative methylation-specific PCR Plasma 

References

  1. 1.
    Salvi S, Gurioli G, De Giorgi U, Conteduca V, Tedaldi G, Calistri D, Casadio V (2016) Cell-free DNA as a diagnostic marker for cancer: current insights. Onco Targets Ther 9:6549–6559. https://doi.org/10.2147/OTT.S100901CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chen K, Zhang H, Zhang L-N, Ju S-Q, Qi J, Huang D-F, Li F, Wei Q, Zhang J (2013) Value of circulating cell-free DNA in diagnosis of hepatocellular carcinoma. World J Gastroenterol 19(20):3143–3149. https://doi.org/10.3748/wjg.v19.i20.3143CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cheuk IWY, Shin VY, Kwong A (2017) Detection of methylated circulating DNA as noninvasive biomarkers for breast cancer diagnosis. J Breast Cancer 20(1):12–19. https://doi.org/10.4048/jbc.2017.20.1.12CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV (2013) The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci 14(9):18925–18958. https://doi.org/10.3390/ijms140918925CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Schwarzenbach H, Pantel K (2015) Circulating DNA as biomarker in breast cancer. Breast Cancer Res 17:136. https://doi.org/10.1186/s13058-015-0645-5CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Diaz LA Jr, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32(6):579–586. https://doi.org/10.1200/jco.2012.45.2011CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11(6):426–437. https://doi.org/10.1038/nrc3066CrossRefGoogle Scholar
  8. 8.
    Fleischhacker M, Schmidt B (2007) Circulating nucleic acids (CNAs) and cancer—a survey. Biochim Biophys Acta 1775(1):181–232. https://doi.org/10.1016/j.bbcan.2006.10.001CrossRefPubMedGoogle Scholar
  9. 9.
    Boscolo-Rizzo P, Furlan C, Lupato V, Polesel J, Fratta E (2017) Novel insights into epigenetic drivers of oropharyngeal squamous cell carcinoma: role of HPV and lifestyle factors. Clin Epigenetics 9:124. https://doi.org/10.1186/s13148-017-0424-5CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fratta E, Montico B, Rizzo A, Colizzi F, Sigalotti L, Dolcetti R (2016) Epimutational profile of hematologic malignancies as attractive target for new epigenetic therapies. Oncotarget 7(35):57327–57350. https://doi.org/10.18632/oncotarget.10033CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fujiwara K, Fujimoto N, Tabata M, Nishii K, Matsuo K, Hotta K, Kozuki T, Aoe M, Kiura K, Ueoka H, Tanimoto M (2005) Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin Cancer Res 11(3):1219–1225PubMedGoogle Scholar
  12. 12.
    Gold B, Cankovic M, Furtado LV, Meier F, Gocke CD (2015) Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? a report of the Association for Molecular Pathology. J Mol Diagn 17(3):209–224. https://doi.org/10.1016/j.jmoldx.2015.02.001CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Perrone F, Lampis A, Bertan C, Verderio P, Ciniselli CM, Pizzamiglio S, Frattini M, Nucifora M, Molinari F, Gallino G, Gariboldi M, Meroni E, Leo E, Pierotti MA, Pilotti S (2014) Circulating free DNA in a screening program for early colorectal cancer detection. Tumori 100(2):115–121. https://doi.org/10.1700/1491.16389CrossRefPubMedGoogle Scholar
  14. 14.
    Madhavan D, Wallwiener M, Bents K, Zucknick M, Nees J, Schott S, Cuk K, Riethdorf S, Trumpp A, Pantel K, Sohn C, Schneeweiss A, Surowy H, Burwinkel B (2014) Plasma DNA integrity as a biomarker for primary and metastatic breast cancer and potential marker for early diagnosis. Breast Cancer Res Treat 146(1):163–174. https://doi.org/10.1007/s10549-014-2946-2CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Xia S, Huang CC, Le M, Dittmar R, Du M, Yuan T, Guo Y, Wang Y, Wang X, Tsai S, Suster S, Mackinnon AC, Wang L (2015) Genomic variations in plasma cell free DNA differentiate early stage lung cancers from normal controls. Lung Cancer 90(1):78–84. https://doi.org/10.1016/j.lungcan.2015.07.002CrossRefGoogle Scholar
  16. 16.
    Li Z, Guo X, Tang L, Peng L, Chen M, Luo X, Wang S, Xiao Z, Deng Z, Dai L, Xia K, Wang J (2016) Methylation analysis of plasma cell-free DNA for breast cancer early detection using bisulfite next-generation sequencing. Tumour Biol 37(10):13111–13119. https://doi.org/10.1007/s13277-016-5190-zCrossRefPubMedGoogle Scholar
  17. 17.
    Barault L, Amatu A, Siravegna G, Ponzetti A, Moran S, Cassingena A, Mussolin B, Falcomata C, Binder AM, Cristiano C, Oddo D, Guarrera S, Cancelliere C, Bustreo S, Bencardino K, Maden S, Vanzati A, Zavattari P, Matullo G, Truini M, Grady WM, Racca P, Michels KB, Siena S, Esteller M, Bardelli A, Sartore-Bianchi A, Di Nicolantonio F (2017) Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment response in metastatic colorectal cancer. Gut. https://doi.org/10.1136/gutjnl-2016-313372CrossRefGoogle Scholar
  18. 18.
    Horning AM, Awe JA, Wang CM, Liu J, Lai Z, Wang VY, Jadhav RR, Louie AD, Lin CL, Kroczak T, Chen Y, Jin VX, Abboud-Werner SL, Leach RJ, Hernandez J, Thompson IM, Saranchuk J, Drachenberg D, Chen CL, Mai S, Huang TH (2015) DNA methylation screening of primary prostate tumors identifies SRD5A2 and CYP11A1 as candidate markers for assessing risk of biochemical recurrence. Prostate 75(15):1790–1801. https://doi.org/10.1002/pros.23052CrossRefPubMedGoogle Scholar
  19. 19.
    Wang J, Han X, Sun Y (2017) DNA methylation signatures in circulating cell-free DNA as biomarkers for the early detection of cancer. Sci China Life Sci 60(4):356–362. https://doi.org/10.1007/s11427-016-0253-7CrossRefPubMedGoogle Scholar
  20. 20.
    Warton K, Samimi G (2015) Methylation of cell-free circulating DNA in the diagnosis of cancer. Front Mol Biosci 2:13. https://doi.org/10.3389/fmolb.2015.00013CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Issa J-P (2012) DNA methylation as a clinical marker in oncology. J Clin Oncol 30(20):2566–2568. https://doi.org/10.1200/jco.2012.42.1016CrossRefPubMedGoogle Scholar
  22. 22.
    Decock A, Ongenaert M, Cannoodt R, Verniers K, De Wilde B, Laureys G, Van Roy N, Berbegall AP, Bienertova-Vasku J, Bown N, Clement N, Combaret V, Haber M, Hoyoux C, Murray J, Noguera R, Pierron G, Schleiermacher G, Schulte JH, Stallings RL, Tweddle DA, De Preter K, Speleman F, Vandesompele J (2016) Methyl-CpG-binding domain sequencing reveals a prognostic methylation signature in neuroblastoma. Oncotarget 7(2):1960–1972. https://doi.org/10.18632/oncotarget.6477CrossRefPubMedGoogle Scholar
  23. 23.
    Exner R, Pulverer W, Diem M, Spaller L, Woltering L, Schreiber M, Wolf B, Sonntagbauer M, Schröder F, Stift J, Wrba F, Bergmann M, Weinhäusel A, Egger G (2015) Potential of DNA methylation in rectal cancer as diagnostic and prognostic biomarkers. Br J Cancer 113(7):1035–1045. https://doi.org/10.1038/bjc.2015.303CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hao X, Luo H, Krawczyk M, Wei W, Wang W, Wang J, Flagg K, Hou J, Zhang H, Yi S, Jafari M, Lin D, Chung C, Caughey BA, Li G, Dhar D, Shi W, Zheng L, Hou R, Zhu J, Zhao L, Fu X, Zhang E, Zhang C, Zhu J-K, Karin M, Xu R-H, Zhang K (2017) DNA methylation markers for diagnosis and prognosis of common cancers. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1703577114CrossRefGoogle Scholar
  25. 25.
    Jeschke J, Bizet M, Desmedt C, Calonne E, Dedeurwaerder S, Garaud S, Koch A, Larsimont D, Salgado R, Van den Eynden G, Willard Gallo K, Bontempi G, Defrance M, Sotiriou C, Fuks F (2017) DNA methylation-based immune response signature improves patient diagnosis in multiple cancers. J Clin Invest 127(8):3090–3102. https://doi.org/10.1172/jci91095CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pineda B, Diaz-Lagares A, Perez-Fidalgo JA, Alonso E, Sandoval J, Gonzalez I, Crujeiras A-B, Burgues O, Esteller M, Lluch A, Eroles P (2015) DNA methylation signature to identify treatment response in triple negative breast cancer. J Clin Oncol 33(15_Suppl):1079. https://doi.org/10.1200/jco.2015.33.15_suppl.1079CrossRefGoogle Scholar
  27. 27.
    Shen S, Wang G, Shi Q, Zhang R, Zhao Y, Wei Y, Chen F, Christiani DC (2017) Seven-CpG-based prognostic signature coupled with gene expression predicts survival of oral squamous cell carcinoma. Clin Epigenetics 9:88. https://doi.org/10.1186/s13148-017-0392-9CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Strand SH, Orntoft TF, Sorensen KD (2014) Prognostic DNA methylation markers for prostate cancer. Int J Mol Sci 15(9):16544–16576. https://doi.org/10.3390/ijms150916544CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sigalotti L, Covre A, Fratta E, Parisi G, Sonego P, Colizzi F, Coral S, Massarut S, Kirkwood JM, Maio M (2012) Whole genome methylation profiles as independent markers of survival in stage IIIC melanoma patients. J Transl Med 10:185. https://doi.org/10.1186/1479-5876-10-185CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jiang P, Chan CWM, Chan KCA, Cheng SH, Wong J, Wong VW-S, Wong GLH, Chan SL, Mok TSK, Chan HLY, Lai PBS, Chiu RWK, Lo YMD (2015) Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci 112(11):E1317–E1325. https://doi.org/10.1073/pnas.1500076112CrossRefPubMedGoogle Scholar
  31. 31.
    Parpart-Li S, Bartlett B, Popoli M, Adleff V, Tucker L, Steinberg R, Georgiadis A, Phallen J, Brahmer J, Azad N, Browner I, Laheru D, Velculescu VE, Sausen M, Diaz LA Jr (2017) The effect of preservative and temperature on the analysis of circulating tumor DNA. Clin Cancer Res 23(10):2471–2477. https://doi.org/10.1158/1078-0432.ccr-16-1691CrossRefPubMedGoogle Scholar
  32. 32.
    Sherwood JL, Corcoran C, Brown H, Sharpe AD, Musilova M, Kohlmann A (2016) Optimised pre-analytical methods improve KRAS mutation detection in circulating tumour DNA (ctDNA) from patients with non-small cell lung cancer (NSCLC). PLoS One 11(2):e0150197. https://doi.org/10.1371/journal.pone.0150197CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kang Q, Henry NL, Paoletti C, Jiang H, Vats P, Chinnaiyan AM, Hayes DF, Merajver SD, Rae JM, Tewari M (2016) Comparative analysis of circulating tumor DNA stability in K3EDTA, Streck, and CellSave blood collection tubes. Clin Biochem 49(18):1354–1360. https://doi.org/10.1016/j.clinbiochem.2016.03.012CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Toro PV, Erlanger B, Beaver JA, Cochran RL, VanDenBerg DA, Yakim E, Cravero K, Chu D, Zabransky DJ, Wong HY, Croessmann S, Parsons H, Hurley PJ, Lauring J, Park BH (2015) Comparison of cell stabilizing blood collection tubes for circulating plasma tumor DNA. Clin Biochem 48(15):993–998. https://doi.org/10.1016/j.clinbiochem.2015.07.097CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ogino S, Kawasaki T, Brahmandam M, Cantor M, Kirkner GJ, Spiegelman D, Makrigiorgos GM, Weisenberger DJ, Laird PW, Loda M, Fuchs CS (2006) Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J Mol Diagn 8(2):209–217. https://doi.org/10.2353/jmoldx.2006.050135CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sepulveda AR, Jones D, Ogino S, Samowitz W, Gulley ML, Edwards R, Levenson V, Pratt VM, Yang B, Nafa K, Yan L, Vitazka P (2009) CpG methylation analysis—current status of clinical assays and potential applications in molecular diagnostics: a report of the Association for Molecular Pathology. J Mol Diagn 11(4):266–278. https://doi.org/10.2353/jmoldx.2009.080125CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sigalotti L, Fratta E, Coral S, Tanzarella S, Danielli R, Colizzi F, Fonsatti E, Traversari C, Altomonte M, Maio M (2004) Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2′-deoxycytidine. Cancer Res 64(24):9167–9171. https://doi.org/10.1158/0008-5472.can-04-1442CrossRefPubMedGoogle Scholar
  38. 38.
    Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831CrossRefGoogle Scholar
  39. 39.
    Darst RP, Pardo CE, Ai L, Brown KD, Kladde MP (2010) Bisulfite sequencing of DNA. In: Ausubel FM et al (eds) Current protocols in molecular biology. Chapter 7, Unit 7.9:1–17. https://doi.org/10.1002/0471142727.mb0709s91CrossRefGoogle Scholar
  40. 40.
    Snyder Matthew W, Kircher M, Hill Andrew J, Daza Riza M, Shendure J (2016) Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164(1):57–68. https://doi.org/10.1016/j.cell.2015.11.050CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yi S, Long F, Cheng J, Huang D (2017) An optimized rapid bisulfite conversion method with high recovery of cell-free DNA. BMC Mol Biol 18(1):24. https://doi.org/10.1186/s12867-017-0101-4CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Holmes EE, Jung M, Meller S, Leisse A, Sailer V, Zech J, Mengdehl M, Garbe L-A, Uhl B, Kristiansen G, Dietrich D (2014) Performance evaluation of kits for bisulfite-conversion of DNA from tissues, cell lines, FFPE tissues, aspirates, lavages, effusions, plasma, serum, and urine. PLoS One 9(4):e93933. https://doi.org/10.1371/journal.pone.0093933CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology 5(1):3. https://doi.org/10.3390/biology5010003CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Bryzgunova OE, Laktionov PP (2017) [Current methods of extracellular DNA methylation analysis]. Mol Biol (Mosk) 51(2):195–214. https://doi.org/10.7868/s0026898417010074
  45. 45.
    Olek A, Oswald J, Walter J (1996) A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res 24(24):5064–5066. https://doi.org/10.1093/nar/24.24.5064CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Delpu Y, Cordelier P, Cho W, Torrisani J (2013) DNA methylation and cancer diagnosis. Int J Mol Sci 14(7):15029CrossRefGoogle Scholar
  47. 47.
    Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28(8):E32CrossRefGoogle Scholar
  48. 48.
    Mazurek AM, Fiszer-Kierzkowska A, Rutkowski T, Skladowski K, Pierzyna M, Scieglinska D, Wozniak G, Glowacki G, Kawczynski R, Malusecka E (2013) Optimization of circulating cell-free DNA recovery for KRAS mutation and HPV detection in plasma. Cancer Biomark 13(5):385–394. https://doi.org/10.3233/cbm-130371CrossRefPubMedGoogle Scholar
  49. 49.
    Maggi EC, Gravina S, Cheng H, Piperdi B, Yuan Z, Dong X, Libutti SK, Vijg J, Montagna C (2018) Development of a method to implement whole-genome bisulfite sequencing of cfDNA from cancer patients and a mouse tumor model. Front Genet 9:6. https://doi.org/10.3389/fgene.2018.00006CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Skrypkina I, Tsyba L, Onyshchenko K, Morderer D, Kashparova O, Nikolaienko O, Panasenko G, Vozianov S, Romanenko A, Rynditch A (2016) Concentration and methylation of cell-free DNA from blood plasma as diagnostic markers of renal cancer. Dis Markers 2016:10. https://doi.org/10.1155/2016/3693096CrossRefGoogle Scholar
  51. 51.
    Vizza E, Corrado G, De Angeli M, Carosi M, Mancini E, Baiocco E, Chiofalo B, Patrizi L, Zampa A, Piaggio G, Cicchillitti L (2018) Serum DNA integrity index as a potential molecular biomarker in endometrial cancer. J Exp Clin Cancer Res 37(1):16. https://doi.org/10.1186/s13046-018-0688-4CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Davidović RS, Božović AM, Mandušić VL, Krajnović MM (2014) Methylation-specific PCR: four steps in primer design. Cent Eur J Biol 9(12):1127–1139. https://doi.org/10.2478/s11535-014-0324-zCrossRefGoogle Scholar
  53. 53.
    Illingworth RS, Bird AP (2009) CpG islands—‘A rough guide’. FEBS Lett 583(11):1713–1720. https://doi.org/10.1016/j.febslet.2009.04.012CrossRefPubMedGoogle Scholar
  54. 54.
    Asmar F, Søgaard A, Grønbæk K (2015) Chapter 2—DNA methylation and hydroxymethylation in cancer A2. In: Gray SG (ed) Epigenetic cancer therapy. Academic Press, Boston, MA, pp 9–30. https://doi.org/10.1016/B978-0-12-800206-3.00002-1CrossRefGoogle Scholar
  55. 55.
    Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119. https://doi.org/10.1016/j.plantsci.2013.12.007CrossRefPubMedGoogle Scholar
  56. 56.
    Li L-C, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18(11):1427–1431. https://doi.org/10.1093/bioinformatics/18.11.1427CrossRefPubMedGoogle Scholar
  57. 57.
    Levin JD, Fiala D, Samala MF, Kahn JD, Peterson RJ (2006) Position-dependent effects of locked nucleic acid (LNA) on DNA sequencing and PCR primers. Nucleic Acids Res 34(20):e142. https://doi.org/10.1093/nar/gkl756CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gustafson KS (2008) Locked nucleic acids can enhance the analytical performance of quantitative methylation-specific polymerase chain reaction. J Mol Diagn 10(1):33–42. https://doi.org/10.2353/jmoldx.2008.070076CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Hattori N, Ushijima T (2011) Chapter 8—Analysis of gene-specific DNA methylation A2. In: Tollefsbol T (ed) Handbook of epigenetics. Academic Press, San Diego, CA, pp 125–134. https://doi.org/10.1016/B978-0-12-375709-8.00008-3CrossRefGoogle Scholar
  60. 60.
    Sorber L, Zwaenepoel K, Deschoolmeester V, Roeyen G, Lardon F, Rolfo C, Pauwels P (2017) A comparison of cell-free DNA isolation kits: isolation and quantification of cell-free DNA in plasma. J Mol Diagn 19(1):162–168. https://doi.org/10.1016/j.jmoldx.2016.09.009CrossRefGoogle Scholar
  61. 61.
    Umetani N, Giuliano AE, Hiramatsu SH, Amersi F, Nakagawa T, Martino S, Hoon DSB (2006) Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin Oncol 24(26):4270–4276. https://doi.org/10.1200/jco.2006.05.9493CrossRefPubMedGoogle Scholar
  62. 62.
    Furlan C, Polesel J, Barzan L, Franchin G, Sulfaro S, Romeo S, Colizzi F, Rizzo A, Baggio V, Giacomarra V, Dei Tos AP, Boscolo-Rizzo P, Vaccher E, Dolcetti R, Sigalotti L, Fratta E (2017) Prognostic significance of LINE-1 hypomethylation in oropharyngeal squamous cell carcinoma. Clin Epigenetics 9:58. https://doi.org/10.1186/s13148-017-0357-zCrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Luca Sigalotti
    • 1
  • Alessia Covre
    • 2
  • Francesca Colizzi
    • 3
  • Elisabetta Fratta
    • 3
    Email author
  1. 1.Istituto di Patologia Clinica, Azienda Sanitaria Universitaria IntegrataUdineItaly
  2. 2.Center for Immuno-Oncology, Division of Medical Oncology and Immunotherapy, Department of OncologyUniversity Hospital of SienaSienaItaly
  3. 3.Immunopathology and Cancer Biomarkers, Department of Translational ResearchCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly

Personalised recommendations