Advertisement

Cell-Free DNA: Applications in Different Diseases

  • Rossella Ranucci
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1909)

Abstract

Since its discovery in human blood plasma about 70 years ago, circulating cell-free DNA (cfDNA) has become an attractive subject of research as noninvasive disease biomarker. The interest in clinical applications has gained an exponential increase, making it a popular and potential target in a wide range of research areas.

cfDNA can be found in different body fluids, both in healthy and not healthy subjects. The recent and rapid development of new molecular techniques is promoting the study and the identification of cfDNA, holding the key to minimally invasive diagnostics, improving disease monitoring, clinical decision, and patients’ outcome.

cfDNA has already given a huge impact on prenatal medicine, and it could become, in the next future, the standard of care also in other fields, from oncology to transplant medicine and cardiovascular diseases.

Key words

Cell-free DNA Liquid biopsy Cell-free fetal DNA Circulating tumor DNA Clinical application 

References

  1. 1.
    Mandel P, Métais P (1948) Les acides nucléiques du plasma sanguin chez l’homme. Biologie 3–4:241–243Google Scholar
  2. 2.
    Cicchillitti L, Corrado G, De Angeli M et al (2017) Circulating cell-free DNA content as blood based biomarker in endometrial cancer. Oncotarget 8(70):115230–115243PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Fleischhacker M, Schimdt B (2007) Circulating nucleic acids (CNAs) and cancer—a survey. Biochim Biophys Acta 1775:181–232PubMedPubMedCentralGoogle Scholar
  4. 4.
    Jahr S, Hentze H, Englisch S et al (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61(4):1659–1665PubMedPubMedCentralGoogle Scholar
  5. 5.
    Stroun M, Maurice P, Vasioukhin V et al (2000) The origin and mechanism of circulating DNA. Ann N Y Acad Sci 906:161–168PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Stroun M, Lyautey J, Lederrey C et al (2001) About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta 313(1–2):139–142PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Canzoniero JV, Park BH (2016) Use of cell free DNA in breast oncology. Biochim Biophys Acta 1865(2):266–274PubMedPubMedCentralGoogle Scholar
  8. 8.
    Stötzer OJ, Lehner J, Fersching-Gierlich D et al (2014) Diagnostic relevance of plasma DNA and DNA integrity for breast cancer. Tumour Biol 35(2):1183–1191PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Lui YY, Chik KW, Chiu RW et al (2002) Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin Chem 48(3):421–427PubMedGoogle Scholar
  10. 10.
    Elshimali YI, Khaddour H, Sarkissyan M et al (2013) The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci 14(9):18925PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Swarup V, Rajeswari MR (2007) Circulating (cell-free) nucleic acids—a promising, non-invasive tool for early detection of several human diseases. FEBS Lett 581(5):795–799PubMedCrossRefGoogle Scholar
  12. 12.
    Diaz LA Jr, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32(6):579–586PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Giacona MB et al (1998) Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas 17(1):89–97PubMedCrossRefGoogle Scholar
  14. 14.
    Tsumita T, Iwanaga M (1963) Fate of injected deoxyribonucleic acid in mice. Nature 198:1088–1089PubMedCrossRefGoogle Scholar
  15. 15.
    Lo YM, Zhang J, Leung TN et al (1999) Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 64(1):218–224PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Snyder MW, Kircher M, Hill AJ et al (2016) Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164(1–2):57–68PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Nagata S, Nagase H, Kawane K et al (2003) Degradation of chromosomal DNA during apoptosis. Cell Death Differ 10:108–116PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Holdenrieder S, Stieber P (2004) Apoptotic markers in cancer. Clin Biochem 37:605–617PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Nagata S (2005) DNA degradation in development and programmed cell death. Annu Rev Immunol 23:853–875PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Karachaliou N, Sosa EA, Molina MA et al (2017) Possible application of circulating free tumor DNA in non-small cell lung cancer patients. J Thorac Dis 9(suppl 13):S1364PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Stroun M, Lyautey J, Lederrey C et al (2001) Alu repeat sequences are present in increased proportions compared to a unique gene in plasma/serum DNA: evidence for a preferential release from viable cells? Ann N Y Acad Sci 945:258–264PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Van der Vaart M, Pretorius PJ (2008) Circulating DNA. Its origin and fluctuation. Ann N Y Acad Sci 1137:18–26PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Anker P, Stroun M, Maurice PA (1975) Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Res 35:2375–2382PubMedPubMedCentralGoogle Scholar
  24. 24.
    Van der Vaart M, Pretorius PJ (2007) The origin of circulating free DNA. Clin Chem 53:2215PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Gardiner C, Harrison P, Belting M et al (2015) Extracellular vesicles, tissue factor, cancer and thrombosis—discussion themes of the ISEV 2014 Educational Day. J Extracell Vesicles 4:26901PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ho MW (2009) Intercommunication via circulating nucleic acids. Sci Soc 42:46–48Google Scholar
  27. 27.
    Tan EM, Schur PH, Carr RI et al (1966) Deoxybonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. J Clin Invest 45(11):1732–1740PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Leon SA, Shapiro B, Sklaroff DM et al (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37(3):646–650Google Scholar
  29. 29.
    Shapiro B, Chakrabarty M, Cohn EM et al (1983) Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer 51(11):2116–2120PubMedCrossRefGoogle Scholar
  30. 30.
    Lo YM, Corbetta N, Chamberlain PF et al (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350(9076):485–487CrossRefGoogle Scholar
  31. 31.
    Rainer TH, Wong LK, Lam W et al (2003) Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem 49(4):562–569PubMedCrossRefGoogle Scholar
  32. 32.
    Chang Y, Chia RH, Wu TL et al (2003) Elevated cell-free DNA detected in patients with myocardial infarction. Clin Chim Acta 327:95–101PubMedCrossRefGoogle Scholar
  33. 33.
    Frank OM (2016) Circulating cell-free DNA differentiates severity of inflammation. Biol Res Nurs 18(5):477–488PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Chan AK, Chiu RW, Lo YM et al (2003) Cell-free nucleic acids in plasma, serum and urine: a new tool in molecular diagnosis. Ann Clin Biochem 40(Pt 2):122–130PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Salvi S, Gurioli G, De Giorgi U et al (2016) Cell-free DNA as a diagnostic marker for cancer: current insights. Onco Targets Ther 9:6549–6559PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lin SY, Linehan JA, Wilson TG (2017) Emerging utility of urinary cell-free nucleic acid biomarkers for prostate, bladder, and renal cancers. Eur Urol Focus 3(2–3):265–272PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Botezatu I, Serdyuk O, Potapova G et al (2000) Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin Chem 46(8 Pt 1):1078–1084PubMedPubMedCentralGoogle Scholar
  38. 38.
    Casadio V, Calistri D, Salvi S et al (2013) Urine cell-free DNA integrity as a marker for early prostate cancer diagnosis: a pilot study. Biomed Res Int 2013:270457PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Garzón M, Villatoro S, Teixidó C et al (2016) KRAS mutations in the circulating free DNA (cfDNA) of non-small cell lung cancer (NSCLC) patients. Transl Lung Cancer Res 5(5):511–516PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Papageorgiou EA, Karagrigoriou A, Tsaliki E et al (2011) Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21. Nat Med 17(4):510–513PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lo YM, Tein MS, Lau TK (1998) Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 62(4):768–775PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gerson KD, O’Brien BM (2018) Cell-free DNA. Screening for single-gene disorders and determination of fetal rhesus D genotype. Obstet Gynecol Clin N Am 45:27–39CrossRefGoogle Scholar
  43. 43.
    Liao GJ, Gronowski AM, Zhao Z et al (2014) Non-invasive prenatal testing using cell-free fetal DNA in maternal circulation. Clin Chim Acta 428:44–50PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ashoor G, Syngelaki A, Poon LC et al (2013) Fetal fraction in maternal plasma cell-free DNA at 11–13 weeks’ gestation: relation to maternal and fetal characteristics. Ultrasound Obstet Gynecol 41(1):26–32PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Chitty LS, Griffin DR, Meaney C et al (2011) New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma. Ultrasound Obstet Gynecol 37(3):283–289PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Amicucci P, Gennarelli M, Novelli G et al (2000) Prenatal diagnosis of myotonic dystrophy using fetal DNA obtained from maternal plasma. Clin Chem 46(2):301–302PubMedPubMedCentralGoogle Scholar
  47. 47.
    Chitty LS, Bianchi DW (2013) Noninvasive prenatal testing: the paradigm is shifting rapidly. Prenat Diagn 33(6):511–513PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Hill M, Barrett AN, White H et al (2012) Uses of cell free fetal DNA in maternal circulation. Best Pract Res Clin Obstet Gynaecol 26(5):639–654PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Finning K, Martin P, Daniels G (2004) A clinical service in the UK to predict fetal Rh (Rhesus) D blood group using free fetal DNA in maternal plasma. Ann N Y Acad Sci 1022:119–123PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Fiorentino F, Bono S, Pizzuti F et al (2017) The clinical utility of genome-wide non invasive prenatal screening. Prenat Diagn 37(6):593–601PubMedCrossRefGoogle Scholar
  51. 51.
    Ulrich BC, Cloud PP (2018) Cell-free DNA in oncology: gearing up for clinic. Ann Lab Med 38:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Sozzi G, Conte D, Leon M et al (2003) Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol 21(21):3902–3908PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Shao X, He Y, Ji M et al (2015) Quantitative analysis of cell-free DNA in ovarian cancer. Oncol Lett 10(6):3478–3482PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Diehl F, Schmidt K, Choti MA et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14(9):985–990PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Diehl F, Li M, Dressman D et al (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 102(45):16368–16373PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Holdhoff M, Schmidt K, Donehower R et al (2009) Analysis of circulating tumor DNA to confirm somatic KRAS mutations. J Natl Cancer Inst 101(18):1284–1285PubMedCrossRefGoogle Scholar
  57. 57.
    Alix-Panabières C, Pantel K (2016) Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 6(5):479–491PubMedCrossRefGoogle Scholar
  58. 58.
    Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11(6):426–437CrossRefGoogle Scholar
  59. 59.
    Cheng F, Su L, Qian C et al (2016) Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget 7(30):48832–48841PubMedPubMedCentralGoogle Scholar
  60. 60.
    Li J, Dittmar R, Xia S (2017) Cell-free DNA copy number variations in plasma from colorectal cancer patients. Mol Oncol 11:11099–11111Google Scholar
  61. 61.
    Soave A, Chun FK, Hillebrand T et al (2017) Copy number variations of circulating, cell-free DNA in urothelial carcinoma of the bladder patients treated with radical cystectomy: a prospective study. Oncotarget 8:56398–56407PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Husain H, Nykin D, Bui N et al (2016) Cell-free DNA from ascites and pleural effusions: molecular insights into genomic aberrations and disease biology. Mol Cancer Ther 16:948–955CrossRefGoogle Scholar
  63. 63.
    Li Z, Guo X, Tang L (2016) Methylation analysis of plasma cell-free DNA for breast cancer early detection using bisulfate next-generation sequencing. Tumour Biol 37:13111–13119PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    De Mattos-Arruda L, Caldas C (2016) Cell-free circulating tumour DNA as a liquid biopsy in breast cancer. Mol Oncol 10(3):464–474PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Heitzer E, Ulz P, Geigl JB (2015) Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem 61(1):112–123PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lewis AR, Valle JW, McNamara MG (2016) Pancreatic cancer: are “liquid biopsies” ready for prime-time? World J Gastroenterol 22(32):7175–7185PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Domínguez-Vigil IG, Moreno-Martínez AK, Wang JY et al (2018) The dawn of the liquid biopsy in the fight against cancer. Oncotarget 9(2):2912–2922PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Sundaresan TK, Haber DA (2015) Does molecular monitoring matter in early-stage breast cancer? Sci Transl Med 7(302):302fs35PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Yanagita M, Redig AJ, Paweletz CP et al (2016) A prospective evaluation of circulating tumor cells and cell-free DNA in EGFR-mutant non-small cell lung Cancer patients treated with Erlotinib on a phase II trial. Clin Cancer Res 22(24):6010–6020PubMedCrossRefGoogle Scholar
  70. 70.
    Oxnard GR, Paweletz CP, Kuang Y et al (2014) Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res 20(6):1698–1705PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Murtaza M, Dawson SJ, Tsui DW et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497(7447):108–112PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Diaz LA Jr, Williams RT, Wu J et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486(7404):537–540PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Schiavon G, Hrebien S, Garcia-Murillas I et al (2015) Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci Transl Med 7(313):313ra182PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lallous N, Volik SV, Awrey S et al (2016) Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol 17:10PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Azad AA, Volik SV, Wyatt AW et al (2015) Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res 21(10):2315–2324PubMedCrossRefGoogle Scholar
  76. 76.
    Siravegna G, Mussolin B, Buscarino M et al (2015) Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med 21(7):795–801PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Morelli MP, Overman MJ, Dasari A et al (2015) Characterizing the patterns of clonal selection in circulating tumor DNA from patients with colorectal cancer refractory to anti-EGFR treatment. Ann Oncol 26(4):731–736PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Jänne PA, Yang JC, Kim DW et al (2015) AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 372(18):1689–1699PubMedCrossRefGoogle Scholar
  79. 79.
    Sequist LV, Soria JC, Goldman JW et al (2015) Rociletinib in EGFR-mutated non-small-cell lung cancer. N Engl J Med 372(18):1700–1709PubMedCrossRefGoogle Scholar
  80. 80.
  81. 81.
    Truszewska A, Foroncewicz B, Pączek L (2017) The role and diagnostic value of cell-free DNA in systemic lupus erythematosus. Clin Exp Rheumatol 35(2):330–336PubMedPubMedCentralGoogle Scholar
  82. 82.
    Glebova KV, Veiko NN, Nikonov AA et al (2018) Cell-free DNA as a biomarker in stroke: current status, problems and perspectives. Crit Rev Clin Lab Sci 55(1):55–70PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Snyder TM, Khush KK, Valantine HA et al (2011) Universal noninvasive detection of solid organ transplant rejection. Proc Natl Acad Sci U S A 108(15):6229–6234PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    El Messaoudi S, Rolet F, Mouliere F et al (2013) Circulating cell free DNA: preanalytical considerations. Clin Chim Acta 424:222–230PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rossella Ranucci
    • 1
  1. 1.Biosciences LaboratoryIstituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCSMeldolaItaly

Personalised recommendations