Advertisement

Microchip Isotachophoresis: Analysis of Pharmaceuticals

  • Marián MasárEmail author
  • Jasna Hradski
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1906)

Abstract

Microchip isotachophoresis (μITP) is a miniaturized version of conventional isotachophoresis (ITP) characterized by low sample and buffer consumption and reduced waste production. μITP with universal conductivity detection is suitable for quantitative analysis of relatively simplified samples that contain analyte(s) at relatively high concentration, e.g., pharmaceutical preparations. Here we describe in detail a principle of μITP in terms of reaching highly precise results. A practical use of μITP is shown on the analyses of various pharmaceutical preparations for content of major constituents including active pharmaceutical ingredients as well as pharmaceutical counterions. The pharmaceuticals are treated only minimally prior to the ITP run on a microchip with coupled channels and sample injection channel with 0.9 μL volume. Developed method is suitable for rapid (analysis time up to 10 min), precise (less than 1% RSD of analyte zone length), and accurate (recovery of 98–101%) determination of major pharmaceutical ingredients using a method of internal standard for data evaluation.

Key words

Microchip isotachophoresis Microchip with coupled channels Contact conductivity detection Pharmaceuticals N-acetylcysteine Buserelin acetate 

Notes

Acknowledgments

This work was supported by the Slovak Research and Development Agency (APVV-17-0318) and the Slovak Grant Agency for Science (VEGA 1/0340/15). The financial support of Merck (Darmstadt, Germany) is also acknowledged.

References

  1. 1.
    Smejkal P, Bottenus D, Breadmore MC et al (2013) Microfluidic isotachophoresis: a review. Electrophoresis 34:1493–1509CrossRefGoogle Scholar
  2. 2.
    Walker PA III, Morris MD, Burns MA et al (1998) Isotachophoretic separations on a microchip. Normal Raman spectroscopy detection. Anal Chem 70:3766–3769CrossRefGoogle Scholar
  3. 3.
    Malá Z, Gebauer P, Boček P (2017) Analytical capillary isotachophoresis after 50 years of development: recent progress 2014–2016. Electrophoresis 38:9–19CrossRefGoogle Scholar
  4. 4.
    Malá Z, Gebauer P, Boček P (2015) Recent progress in analytical capillary isotachophoresis. Electrophoresis 36:2–14CrossRefGoogle Scholar
  5. 5.
    Malá Z, Gebauer P, Boček P (2013) Recent progress in analytical capillary isotachophoresis. Electrophoresis 34:19–28CrossRefGoogle Scholar
  6. 6.
    Breadmore MC, Wuethrich A, Li F et al (2017) Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014–2016). Electrophoresis 38:33–59CrossRefGoogle Scholar
  7. 7.
    Boček P (1981) Analytical isotachophoresis. In: Boschke FL (ed) Analytical problems. Topics in current chemistry, vol 95. Springer, Berlin, pp 131–177Google Scholar
  8. 8.
    Sádecká J, Masár M (2014) Electrophoresis | capillary isotachophoresis. In: Reedijk J (ed) Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, WalthamGoogle Scholar
  9. 9.
    Nuchtavorn N, Suntornsuk W, Lunte SM et al (2015) Recent applications of microchip electrophoresis to biomedical analysis. J Pharm Biomed Anal 113:72–96CrossRefGoogle Scholar
  10. 10.
    Štěpánová S, Kašička V (2017) Analysis of proteins and peptides by electromigration methods in microchips. J Sep Sci 40:228–250CrossRefGoogle Scholar
  11. 11.
    Shang FJ, Guihen E, Glennon JD (2012) Recent advances in miniaturisation—the role of microchip electrophoresis in clinical analysis. Electrophoresis 33:105–116CrossRefGoogle Scholar
  12. 12.
    Castro ER, Manz A (2015) Present state of microchip electrophoresis: state of the art and routine applications. J Chromatogr A 1382:66–85CrossRefGoogle Scholar
  13. 13.
    Cui F, Rhee M, Singh A et al (2015) Microfluidic sample preparation for medical diagnostics. Annu Rev Biomed Eng 17:267–286CrossRefGoogle Scholar
  14. 14.
    Tetala KKR, Vijayalakshmi MA (2016) A review on recent developments for biomolecule separation at analytical scale using microfluidic devices. Anal Chim Acta 906:7–21CrossRefGoogle Scholar
  15. 15.
    Chen L, Prest JE, Fielden PR et al (2006) Miniaturised isotachophoresis analysis. Lab Chip 6:474–487CrossRefGoogle Scholar
  16. 16.
    Štěpánová S, Kašička V (2014) Determination of impurities and counterions of pharmaceuticals by capillary electromigration methods. J Sep Sci 37:2039–2055CrossRefGoogle Scholar
  17. 17.
    Paulekuhn GS, Dressman JB, Saal C (2007) Trends in active pharmaceutical ingredient salt selection based on analysis of the Orange book database. J Med Chem 50:6665–6672CrossRefGoogle Scholar
  18. 18.
    Rudašová M, Masár M (2016) Precise determination of N-acetylcysteine in pharmaceuticals by microchip electrophoresis. J Sep Sci 39:433–439CrossRefGoogle Scholar
  19. 19.
    Hradski J, Drusková Chorváthová M, Bodor R et al (2016) Quantitative aspects of microchip isotachophoresis for high precision determination of main components in pharmaceuticals. Anal Bioanal Chem 408:8669–8679CrossRefGoogle Scholar
  20. 20.
    Atkuri KR, Mantovani JJ, Herzenberg LA et al (2007) N-Acetylcysteine-a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol 7:355–359CrossRefGoogle Scholar
  21. 21.
    Poole PJ, Black PN (2001) Oral mucolytic drugs for exacerbations of chronic obstructive pulmonary disease: systematic review. Br Med J 322:1271–1274CrossRefGoogle Scholar
  22. 22.
    Limonta P, Marelli MM, Mai S et al (2012) GnRH receptors in cancer: from cell biology to novel targeted therapeutic strategies. Endocr Rev 33:784–811CrossRefGoogle Scholar
  23. 23.
    Kaniansky D, Masár M, Bodor R et al (2003) Electrophoretic separations on chips with hydrodynamically closed separation systems. Electrophoresis 24:2208–2277CrossRefGoogle Scholar
  24. 24.
    Kaniansky D, Masár M, Bielčíková J (1997) Electroosmotic flow suppressing additives for capillary zone electrophoresis in a hydrodynamically closed separation system. J Chromatogr A 792:483–494CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Analytical Chemistry, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia

Personalised recommendations