Advertisement

Achieving Stable Electrospray Ionization Mass Spectrometry Detection from Microfluidic Chips

  • Iulia M. LazarEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1906)

Abstract

The past two decades have witnessed remarkable advances in the development of microfluidic devices as bioanalytical platforms for the analysis of biological molecules. The implementation of mass spectrometry (MS) detection systems on these devices has become inevitable, and various chip-MS ionization interfaces have been developed. As electrospray ionization (ESI) is particularly relevant for the analysis of large biological molecules such as proteins or peptides, efforts have focused on advancing interfaces that meet the demands of nano-separation techniques that are typically used prior to MS detection. Achieving stable ESI conditions that enable sensitive MS detection is, however, not trivial, especially when the spray is generated from a microfabricated platform. This chapter is aimed at providing a step-by-step protocol for producing stable and efficient electrospray sample ionization from microfluidic chips that are used for capillary electrophoresis (CE) separations.

Key words

Microfluidics Mass spectrometry Electrospray ionization Signal stability 

Notes

Acknowledgment

This work was supported by grant NSF/DBI-1255991 to I.M.L.

References

  1. 1.
    Xue Q, Foret F, Dunayevskiy YM, Zavracky PM, McGruer NE, Karger BL (1997) Multichannel microchip electrospray mass spectrometry. Anal Chem 69:426–430CrossRefGoogle Scholar
  2. 2.
    Ramsey RS, Ramsey JM (1997) Generating electrospray from microchip devices using electroosmotic pumping. Anal Chem 69:1174–1178CrossRefGoogle Scholar
  3. 3.
    Xue Q, Dunayevskiy YM, Foret F, Karger BL (1997) Integrated multichannel microchip electrospray ionization mass spectrometry: analysis of peptides from on-chip tryptic digestion of mellitin. Rapid Commun Mass Spectrom 11:1253–1256CrossRefGoogle Scholar
  4. 4.
    Figeys D, Ning Y, Aebersold R (1997) A microfabricated device for rapid protein identification by microelectrospray ion trap mass spectrometry. Anal Chem 69:3153–3160CrossRefGoogle Scholar
  5. 5.
    Figeys D, Gygi SP, McKinnon G, Aebersold R (1998) An integrated microfluidics-tandem mass spectrometry system for automated protein analysis. Anal Chem 70:3728–3734CrossRefGoogle Scholar
  6. 6.
    Xu N, Lin Y, Hofstadler SA, Matson D, Call CJ, Smith RD (1998) A microfabricated dialysis device for sample cleanup in electrospray ionization mass spectrometry. Anal Chem 70:3553–3556CrossRefGoogle Scholar
  7. 7.
    Li J, Thibault P, Bings NH, Skinner CD, Wang C, Colyer C, Harrison J (1999) Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using low dead volume connection: application to rapid analyses of proteolytic digests. Anal Chem 71:3036–3045CrossRefGoogle Scholar
  8. 8.
    Lazar IM, Sundberg SA, Ramsey RS, Ramsey JM (1999) Subattomole-sensitivity microchip nanoelectrospray source with time-of-flight mass spectrometry detection. Anal Chem 71:3627–3631CrossRefGoogle Scholar
  9. 9.
    Lazar IM, Ramsey RS, Jacobson SC, Foote RS, Ramsey JM (2000) Novel microfabricated device for electrokinetically induced pressure flow and electrospray ionization mass spectrometry. J Chromatogr A 892:195–201CrossRefGoogle Scholar
  10. 10.
    Schultz GA, Corso TN, Prosser SJ, Zhang S (2000) A fully integrated monolithic microchip electrospray device for mass spectrometry. Anal Chem 72:4058–4063CrossRefGoogle Scholar
  11. 11.
    Kameoka J, Orth R, Ilic B, Czaplewski D, Wachs T, Craighead HG (2002) An electrospray ionization source for integration with microfluidics. Anal Chem 74:5897–5901CrossRefGoogle Scholar
  12. 12.
    Sjödahl J, Melin J, Griss P, Emmer A, Stemme G, Roeraade J (2003) Characterization of micromachined hollow tips for two-dimensional nanoelectrospray mass spectrometry. Rapid Commun Mass Spectrom 17:337–341CrossRefGoogle Scholar
  13. 13.
    Sen AK, Darabi J, Knapp DR (2009) Design, fabrication and test of a microfluidic nebulizer chip for desorption electrospray ionization mass spectrometry. Sensors Actuators B Chem 137:789–796CrossRefGoogle Scholar
  14. 14.
    Deng Y, Henion J, Li J, Thibault P, Wang C, Harrison DJ (2001) Chip-based capillary electrophoresis/mass spectrometry determination off carnitines in human urine. Anal Chem 73:639–646CrossRefGoogle Scholar
  15. 15.
    Chambers AG, Mellors JS, Henley WH, Ramsey JM (2011) Monolithic integration of two-dimensional liquid chromatography-capillary electrophoresis and electrospray ionization on a microfluidic device. Anal Chem 83:842–849CrossRefGoogle Scholar
  16. 16.
    Chambers AG, Ramsey JM (2012) Microfluidic dual emitter electrospray ionization source for accurate mass measurements. Anal Chem 84:1446–1451CrossRefGoogle Scholar
  17. 17.
    Sainiemi L, Nissila T, Kostiainen R, Franssila S, Ketola RA (2012) A microfabricated micropillar liquid chromatography chip monolithically integrated with an electrospray ionization tip. Lab Chip 12:325–332CrossRefGoogle Scholar
  18. 18.
    Sainiemi L, Sikanen T, Kostiainen R (2012) Integration of fully microfabricated, three-dimensional sharp electrospray ionization tips with microfluidic glass chips. Anal Chem 84:8973–8979CrossRefGoogle Scholar
  19. 19.
    Mao P, Gomez-Sjoberg R, Wang D (2013) Multinozzle emitter array chips for small-volume proteomics. Anal Chem 85:816–819CrossRefGoogle Scholar
  20. 20.
    Heron SR, Wilson R, Shaffer SA, Goodlett DR, Cooper JM (2010) Surface acoustic wave nebulization of peptides as a microfluidic interface for mass spectrometry. Anal Chem 82:3985–3989CrossRefGoogle Scholar
  21. 21.
    Ho J, Tan MK, Go DB, Yeo LY, Friend JR, Chang HC (2011) Paper-based microfluidic surface acoustic wave sample delivery and ionization source for rapid and sensitive ambient mass spectrometry. Anal Chem 83:3260–3266CrossRefGoogle Scholar
  22. 22.
    Gasilova N, Yu Q, Qiao L, Girault HH (2014) On-chip spyhole mass spectrometry for droplet-based microfluidics. Angew Chem 126:4497–4501CrossRefGoogle Scholar
  23. 23.
    Lazar IM, Rockwood AL, Lee ED, Sin JCH, Lee ML (1999) High-speed TOFMS detection for capillary electrophoresis. Anal Chem 71:2578–2581CrossRefGoogle Scholar
  24. 24.
    Lazar IM (2007) Microfluidic devices with mass spectrometry detection. In: Landers JP (ed) Handbook of capillary and microchip electrophoresis and associated microtechniques, 3rd edn. CRC Press, Boca Raton, FL, pp 1459–1506CrossRefGoogle Scholar
  25. 25.
    Khandurina J, Jacobson SC, Waters LC, Foote RS, Ramsey JM (1999) Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. Anal Chem 71:1815–1819CrossRefGoogle Scholar
  26. 26.
    Armenta JM, Dawoud AA, Lazar IM (2009) Microfluidic chips for protein differential expression profiling. Electrophoresis 30:1145–1156CrossRefGoogle Scholar
  27. 27.
    Iliescu C, Taylor H, Avram M, Miao J, Franssila S (2012) A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6:016505CrossRefGoogle Scholar
  28. 28.
    Lazar IM, Kabulski JL (2013) Microfluidic LC device with orthogonal sample extraction for on-chip MALDI-MS detection. Lab Chip 13(11):2055–2065CrossRefGoogle Scholar
  29. 29.
    Ermakov SV, Jacobson SC, Ramsey JM (2000) Computer simulations of electrokinetic injection techniques in microfluidic devices. Anal Chem 72:3512–3517CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biological SciencesVirginia TechBlacksburgUSA

Personalised recommendations