Paper-Based Electrophoresis Microchip as a Powerful Tool for Bioanalytical Applications

  • Cyro L. S. Chagas
  • Thiago M. G. Cardoso
  • Wendell K. T. ColtroEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1906)


This chapter describes the development of paper-based microchip electrophoresis (pME) devices for the separation of clinically relevant compounds. pME were fabricated by laser cut and thermal lamination process using polyester pouches. In addition, hand-drawn pencil electrodes were integrated to the device to perform capacitively coupled contactless conductivity detection (C4D). Finished device costs less than US$ 0.10 and did not require either sophisticated instrumentation or clean room facilities. Furthermore, pME is lightweight, easy to handle, flexible, and robust. pME-C4D device revealed an excellent capacity to separate BSA and creatinine in less than 150 s with baseline resolution. The device proposed in this chapter has proven to be a good alternative as a platform for the diagnosis of diseases from renal disorders such as diabetes mellitus and heart disease.

Key words

Paper electrophoresis Bovine serum albumin Creatinine Pencil electrodes Contactless conductivity detection Biomolecules Clinical diagnosis Kidney failure 


  1. 1.
    Kunkel HG, Tiselius A (1951) Electrophoresis of proteins on filter paper. J Gen Physiol 35:89–118CrossRefGoogle Scholar
  2. 2.
    Jencks WP, Jetton MR, Durrum EL (1955) Paper electrophoresis as a quantitative method. Serum proteins. Biochem J 60:205–215CrossRefGoogle Scholar
  3. 3.
    Mejbaum-Katzenellenbogen W, Dobryszycka WM (1959) New method for quantitative determination of serum proteins separated by paper electrophoresis. Clin Chim Acta 4:515–522CrossRefGoogle Scholar
  4. 4.
    Righetti PG (2005) Electrophoresis: the march of pennies, the march of dimes. J Chromatogr A 1079:24–40CrossRefGoogle Scholar
  5. 5.
    Ehrenkranz JRL (2002) Home and point-of-care pregnancy tests: a review of the technology. Epidemiology 13:S15–S18CrossRefGoogle Scholar
  6. 6.
    Martinez AW, Phillips ST, Butte MJ et al (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed Engl 46:1318–1320CrossRefGoogle Scholar
  7. 7.
    Nanthasurasak P, Cabot JM, See HH et al (2017) Electrophoretic separations on paper: past, present, and future-a review. Anal Chim Acta 985:7–23CrossRefGoogle Scholar
  8. 8.
    Tomazelli Coltro WK, Cheng CM, Carrilho E et al (2014) Recent advances in low-cost microfluidic platforms for diagnostic applications. Electrophoresis 35:2309–2324CrossRefGoogle Scholar
  9. 9.
    Cate DM, Adkins JA, Mettakoonpitak J et al (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87:19–41CrossRefGoogle Scholar
  10. 10.
    Santhiago M, Nery EW, Santos GP et al (2014) Microfluidic paper-based devices for bioanalytical applications. Bioanalysis 6:89–106CrossRefGoogle Scholar
  11. 11.
    Wu Z-Y, Ma B, Xie S-F et al (2017) Simultaneous electrokinetic concentration and separation of proteins on a paper-based analytical device. RSC Adv 7:4011–4016CrossRefGoogle Scholar
  12. 12.
    Ge L, Wang S, Ge S et al (2014) Electrophoretic separation in a microfluidic paper-based analytical device with an on-column wireless electrogenerated chemiluminescence detector. Chem Commun 50:5699–5702CrossRefGoogle Scholar
  13. 13.
    Luo L, Li X, Crooks RM (2014) Low-voltage origami-paper-based electrophoretic device for rapid protein separation. Anal Chem 86:12390–12397CrossRefGoogle Scholar
  14. 14.
    Xu C, Zhong M, Cai L et al (2016) Sample injection and electrophoretic separation on a simple laminated paper based analytical device. Electrophoresis 37:476–481CrossRefGoogle Scholar
  15. 15.
    Carvalhal RF, Kfouri MS, de Oliveira Piazetta MH et al (2010) Electrochemical detection in a paper-based separation device. Anal Chem 82:1162–1165CrossRefGoogle Scholar
  16. 16.
    Shiroma LY, Santhiago M, Gobbi AL et al (2012) Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device. Anal Chim Acta 725:44–50CrossRefGoogle Scholar
  17. 17.
    Dossi N, Toniolo R, Piccin E et al (2013) Pencil-drawn dual electrode detectors to discriminate between analytes comigrating on paper-based fluidic devices but undergoing electrochemical processes with different reversibility. Electroanalysis 25:2515–2522CrossRefGoogle Scholar
  18. 18.
    Pumera M (2007) Contactless conductivity detection for microfluidics: designs and applications. Talanta 74:358–364CrossRefGoogle Scholar
  19. 19.
    Coltro WKT, Lima RS, Segato TP et al (2012) Capacitively coupled contactless conductivity detection on microfluidic systems-ten years of development. Anal Methods 4:25–33CrossRefGoogle Scholar
  20. 20.
    Fracassi da Silva JA, do Lago CL (1998) An oscillometric detector for capillary electrophoresis. Anal Chem 70:4339–4343CrossRefGoogle Scholar
  21. 21.
    Zemann AJ, Schnell E, Volgger D et al (1998) Contactless conductivity detection for capillary electrophoresis. Anal Chem 70:563–567CrossRefGoogle Scholar
  22. 22.
    Wang J, Pumera M, Collins G et al (2002) A chip-based capillary electrophoresis-contactless conductivity microsystem for fast measurements of low-explosive ionic components. Analyst 127:719–723CrossRefGoogle Scholar
  23. 23.
    Pumera M, Wang J, Opekar F et al (2002) Contactless conductivity detector for microchip capillary electrophoresis. Anal Chem 74:1968–1971CrossRefGoogle Scholar
  24. 24.
    Kubáň P, Hauser PC (2015) Contactless conductivity detection for analytical techniques-developments from 2012 to 2014. Electrophoresis 36:195–211CrossRefGoogle Scholar
  25. 25.
    Chagas CLS, de Souza FR, Cardoso TMG et al (2016) A fully disposable paper-based electrophoresis microchip with integrated pencil-drawn electrodes for contactless conductivity detection. Anal Methods 8:6682–6686CrossRefGoogle Scholar
  26. 26.
    Chagas CLS, Costa Duarte L, Lobo-Júnior EO et al (2015) Hand drawing of pencil electrodes on paper platforms for contactless conductivity detection of inorganic cations in human tear samples using electrophoresis chips. Electrophoresis 36:1837–1844CrossRefGoogle Scholar
  27. 27.
    Organization WH and Organization WH The top 10 causes of death. 2012.
  28. 28.
    Burtis C (2011) Tietz Fundamentos da Química Clínica. Elsevier Health Sciences, AmsterdamGoogle Scholar
  29. 29.
    Newman DJ, Thakkar H, Gallagher H (2000) Progressive renal disease: does the quality of the proteinuria matter or only the quantity? Clin Chim Acta 297:43–54CrossRefGoogle Scholar
  30. 30.
    Wu MT, Lam KK, Lee WC et al (2012) Albuminuria, proteinuria, and urinary albumin to protein ratio in chronic kidney disease. J Clin Lab Anal 26:82–92CrossRefGoogle Scholar
  31. 31.
    Lezaic V (2015) Albuminuria as a biomarker of the renal disease. In: Patel VB (ed) Biomarkers in kidney disease. Springer, Dordrecht, pp 1–18Google Scholar
  32. 32.
    Merrill AE, Khan J, Dickerson JA et al (2016) Method-to-method variability in urine albumin measurements. Clin Chim Acta 460:114–119CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Cyro L. S. Chagas
    • 1
  • Thiago M. G. Cardoso
    • 1
  • Wendell K. T. Coltro
    • 1
    Email author
  1. 1.Institute of ChemistryFederal University of GoiasGoianiaBrazil

Personalised recommendations