An Application of Computational Drug Repurposing Based on Transcriptomic Signatures

  • Evangelos Karatzas
  • George Kolios
  • George M. SpyrouEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1903)


Drug repurposing is a methodology where already existing drugs are tested against diseases outside their initial usage, in order to reduce the high cost and long periods of new drug development. In silico drug repurposing further speeds up the process, by testing a large number of drugs against the biological signatures of known diseases. In this chapter, we present a step-by-step methodology of a transcriptomics-based computational drug repurposing pipeline providing a comprehensive guide to the whole procedure, from proper dataset selection to short list derivation of repurposed drugs which might act as inhibitors against the studied disease. The presented pipeline contains the selection and curation of proper transcriptomics datasets, statistical analysis of the datasets in order to extract the top over- and under-expressed gene identifiers, appropriate identifier conversion, drug repurposing analysis, repurposed drugs filtering, cross-tool screening, drug-list re-ranking, and results’ validation.

Key words

Drug repurposing Drug repositioning Transcriptomics Computational pipeline Gene expression RNA-Seq Microarrays 



George M. Spyrou holds the Bioinformatics ERA Chair Position funded by the European Commission Research Executive Agency (REA) Grant BIORISE (Num. 669026), under the Spreading Excellence, Widening Participation, Science with and for Society Framework.

Evangelos S. Karatzas is a PHD student in the National and Kapodistrian University of Athens. His doctoral thesis is being funded by the IKY (State Scholarships Foundation) scholarship, funded by the Action “Strengthening Human Resources, Education and Lifelong Learning,” 2014–2020, co-funded by the European Social Fund (ESF) and the Greek State.


  1. 1.
    Dovrolis N et al (2017) Laying in silico pipelines for drug repositioning: a paradigm in ensemble analysis for neurodegenerative diseases. Drug Discov Today 22(5):805–813PubMedCrossRefGoogle Scholar
  2. 2.
    Avorn J (2015) The $2.6 billion pill—methodologic and policy considerations. N Engl J Med 372(20):1877–1879PubMedCrossRefGoogle Scholar
  3. 3.
    Paul SM et al (2010) How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov 9(3):203–214PubMedCrossRefGoogle Scholar
  4. 4.
    Denis A et al (2010) A comparative study of European rare disease and orphan drug markets. Health Policy 97(2):173–179PubMedCrossRefGoogle Scholar
  5. 5.
    Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5(3):299–314Google Scholar
  7. 7.
    Gentleman RC et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):1CrossRefGoogle Scholar
  8. 8.
    Ritchie ME et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47–e47PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kukurba KR, Montgomery SB (2015) RNA sequencing and analysis. Cold Spring Harb Protoc 2015(11):pdb. top084970CrossRefGoogle Scholar
  10. 10.
    Parkinson H et al (2010) ArrayExpress update—an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res 39(suppl_1):D1002–D1004PubMedPubMedCentralGoogle Scholar
  11. 11.
    Gaidatzis D et al (2014) QuasR: quantification and annotation of short reads in R. Bioinformatics 31(7):1130–1132PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Haider S et al (2009) BioMart Central Portal—unified access to biological data. Nucleic Acids Res 37(suppl_2):W23–W27PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Subramanian A et al (2017) A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171(6):1437–1452.e17PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lamb J et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795):1929–1935CrossRefGoogle Scholar
  16. 16.
    Liu G et al (2003) NetAffx: Affymetrix probesets and annotations. Nucleic Acids Res 31(1):82–86PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Duan Q et al (2016) L1000CDS2: LINCS L1000 characteristic direction signatures search engine. NPJ Syst Biol Appl 2:16015PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Karatzas E et al (2017) Drug repurposing in idiopathic pulmonary fibrosis filtered by a bioinformatics-derived composite score. Sci Rep 7(1):12569PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wishart DS et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(suppl 1):D668–D672CrossRefGoogle Scholar
  20. 20.
    Von Eichborn J et al (2010) PROMISCUOUS: a database for network-based drug-repositioning. Nucleic Acids Res 39(suppl_1):D1060–D1066Google Scholar
  21. 21.
    Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mayr A et al (2016) DeepTox: toxicity prediction using deep learning. Front Environ Sci 3:80CrossRefGoogle Scholar
  23. 23.
    Kuhn M et al (2010) A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 6(1):343PubMedPubMedCentralGoogle Scholar
  24. 24.
    Athanasiadis E, Cournia Z, Spyrou G (2012) ChemBioServer: a web-based pipeline for filtering, clustering and visualization of chemical compounds used in drug discovery. Bioinformatics 28(22):3002–3003PubMedCrossRefGoogle Scholar
  25. 25.
    Kim S et al (2015) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Keenan AB et al (2018) The library of integrated network-based cellular signatures NIH program: system-level cataloging of human cells response to perturbations. Cell Syst 6(1):13–24PubMedCrossRefGoogle Scholar
  27. 27.
    O'Boyle NM et al (2011) Open babel: an open chemical toolbox. J Cheminform 3(1):33PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Brown AS, Patel CJ (2016) A review of validation strategies for computational drug repositioning. Brief Bioinform 19(1):174–177PubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Evangelos Karatzas
    • 1
  • George Kolios
    • 2
  • George M. Spyrou
    • 3
    Email author
  1. 1.Department of Informatics and TelecommunicationsUniversity of AthensAthensGreece
  2. 2.Laboratory of Pharmacology, Department of MedicineDemocritus University of ThraceAlexandroupolisGreece
  3. 3.Bioinformatics ERA Chair, The Cyprus Institute of Neurology and GeneticsNicosiaCyprus

Personalised recommendations