A Drug Repurposing Method Based on Drug-Drug Interaction Networks and Using Energy Model Layouts

  • Mihai UdrescuEmail author
  • Lucreţia Udrescu
Part of the Methods in Molecular Biology book series (MIMB, volume 1903)


Complex network representations of reported drug-drug interactions foster computational strategies that can infer pharmacological functions which, in turn, create incentives for drug repositioning. Here, we use Gephi (a platform for complex network visualization and analysis) to represent a drug-drug interaction network with drug interaction information from DrugBank 4.1. Both modularity class- and force-directed layout ForceAtlas2 are employed to generate drug clusters which correspond to nine specific drug properties. Most drugs comply with their cluster’s dominant property; however, some of them seem not to be in a proper position (i.e., in accordance with their already known functions). Such cases, along with cases of drugs that are topologically placed in the overlapping or bordering zones between clusters, may indicate previously unaccounted pharmacologic functions, thus leading to potential repositionings. Out of the 1141 drugs with relevant information on their interactions in DrugBank 4.1, we confirm the predicted properties for 85% of the drugs. The high prediction rate of our methodology suggests that, at least for some of the 15% drugs that seem to be inconsistent with the predicted property, we can get very good repositioning hints. As such, we present illustrative examples of recovered well-known repositionings, as well as recently confirmed pharmacological properties.

Key words

Complex networks Bioinformatics Systems biology Pharmacology Drug-drug interactions Clustering 


  1. 1.
    Lotfi Shahreza M, Ghadiri N, Mousavi SR, Varshosaz J, Green JR (2017) A review of network-based approaches to drug repositioning. Brief Bioinform bbx017. CrossRefGoogle Scholar
  2. 2.
    Luo Y, Zhao X, Zhou J, Yang J, Zhang Y, Kuang W et al (2017) A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun 8(1):573PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 138(3):333–408PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z (2015) A survey of current trends in computational drug repositioning. Brief Bioinform bbv020 17(1):2–12PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36(suppl_1):D901–D906CrossRefGoogle Scholar
  6. 6.
    Boccara N (2010) Modeling complex systems. Springer Science & Business Media, GermanyCrossRefGoogle Scholar
  7. 7.
    Noack A (2009) Modularity clustering is force-directed layout. Phys Rev E 79(2):026102CrossRefGoogle Scholar
  8. 8.
  9. 9.
  10. 10.
  11. 11.
    Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. ICWSM 8:361–362Google Scholar
  12. 12.
    Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026113CrossRefGoogle Scholar
  13. 13.
    Newman M (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582PubMedCrossRefGoogle Scholar
  14. 14.
    Jacomy M, Venturini T, Heymann S, Bastian M (2014) ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One 9(6):e98679PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Udrescu L, Sbarcea L, Topirceanu A, Iovanovici A, Kurunczi L, Bogdan P, Udrescu M (2016) Clustering drug-drug interaction networks with energy model layouts: community analysis and drug repurposing. Sci Rep 6:32745PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T et al (2017) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46(D1):D1074–D1082PubMedCentralCrossRefGoogle Scholar
  17. 17.
    Fourcade O, Simon MF, Litt L, Samii K, Chap H (2004) Propofol inhibits human platelet aggregation induced by proinflammatory lipid mediators. Anesth Analg 99(2):393–398PubMedCrossRefGoogle Scholar
  18. 18.
    De La Cruz JP, Carmona JA, Paez MV, Blanco E, De La Cuesta FS (1997) Propofol inhibits in vitro platelet aggregation in human whole blood. Anesth Analg 84(4):919–921Google Scholar
  19. 19.
    Wong SB, Cheng SJ, Hung WC, Lee WT, Min MY (2015) Rosiglitazone suppresses in vitro seizures in hippocampal slice by inhibiting presynaptic glutamate release in a model of temporal lobe epilepsy. PLoS One 10(12):e0144806PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Biedermann JS, Kruip MJHA, van der Meer FJ, Rosendaal FR, Leebeek FWG, Cannegieter SC, Lijfering WM (2018) Rosuvastatin use improves measures of coagulation in patients with venous thrombosis. Eur Heart J. PubMedCrossRefGoogle Scholar
  21. 21.
    Smits MM, Muskiet MH, Tonneijck L, Hoekstra T, Kramer MH, Diamant M, van Raalte DH (2016) Exenatide acutely increases heart rate in parallel with augmented sympathetic nervous system activation in healthy overweight males. Br J Clin Pharmacol 81(4):613–620PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cameron-Vendrig A, Reheman A, Siraj MA, Xu XR, Wang Y, Lei X, Afroze T et al (2016) Glucagon-like peptide 1 receptor activation attenuates platelet aggregation and thrombosis. Diabetes 65(6):1714–1723CrossRefGoogle Scholar
  23. 23.
    Kandeepan J, Shaaban J (2016) Catamenial epilepsy: A missed cause of refractory seizure in young women. Malays Fam Physician 11(2–3):24PubMedPubMedCentralGoogle Scholar
  24. 24.
    Herzog AG (2008) Catamenial epilepsy: definition, prevalence pathophysiology and treatment. Seizure 17(2):151–159PubMedCrossRefGoogle Scholar
  25. 25.
    Sarang SS, Yoshida T, Cadet R, Valeras AS, Jensen RV, Gullans SR (2002) Discovery of molecular mechanisms of neuroprotection using cell-based bioassays and oligonucleotide arrays. Physiol Genomics 11(2):45–52PubMedCrossRefGoogle Scholar
  26. 26.
    Baxendale S, Holdsworth CJ, Meza Santoscoy PL, Harrison MR, Fox J, Parkin CA, Ingham PW, Cunliffe VT (2012) Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures. Dis Model Mech 5(6):773–784PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Sato SM, Woolley CS (2016) Acute inhibition of neurosteroid estrogen synthesis suppresses status epilepticus in an animal model. elife 5:e12917PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kulkarni RR, Bairy BK (2015) Disulfiram-induced de novo convulsions without alcohol challenge: Case series and review of literature. Indian J Psychol Med 37(3):345PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Skrott Z, Mistrik M, Andersen KK, Friis S, Majera D, Gursky J, Ozdian T et al (2017) Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature 552(7684):194PubMedPubMedCentralGoogle Scholar
  30. 30.
    Lopes JM, Aubier M, Jardim J, Aranda JV, Macklem PT (1983) Effect of caffeine on skeletal muscle function before and after fatigue. J Appl Physiol 54(5):1303–1305PubMedCrossRefGoogle Scholar
  31. 31.
    Wang A, Wang S, Zhu C, Huang H, Wu L, Wan X, Yang X et al (2016) Coffee and cancer risk: A meta-analysis of prospective observational studies. Sci Rep 6:33711PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Corti R, Binggeli C, Sudano I, Spieker L, Hänseler E, Ruschitzka F, Chaplin WF et al (2002) Coffee acutely increases sympathetic nerve activity and blood pressure independently of caffeine content: role of habitual versus nonhabitual drinking. Circulation 106(23):2935–2940PubMedCrossRefGoogle Scholar
  33. 33.
    Echeverri D, Montes FR, Cabrera M, Galán A, Prieto A (2010) Caffeine’s vascular mechanisms of action. Int J Vasc Med 2010:834060PubMedPubMedCentralGoogle Scholar
  34. 34.
    Gonzaga LA, Vanderlei LCM, Gomes RL, Valenti VE (2017) Caffeine affects autonomic control of heart rate and blood pressure recovery after aerobic exercise in young adults: a crossover study. Sci Rep 7(1):14091PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wang H, Zhou J, Liu QZ, Wang LL, Shang J (2017) Simvastatin and Bezafibrate ameliorate Emotional disorder Induced by High fat diet in C57BL/6 mice. Sci Rep 7(1):2335PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer and Information TechnologyPolitehnica University of TimişoaraTimişoaraRomania
  2. 2.Timişoara Institute of Complex SystemsTimişoaraRomania
  3. 3.Faculty of Pharmacy“Victor Babeş” University of Medicine and Pharmacy TimişoaraTimişoaraRomania

Personalised recommendations