Advertisement

Development of Virus Resistance Transgenic Cotton Using Cotton Leaf Curl Virus Antisense ßC1 Gene

  • S. S. Sohrab
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1902)

Abstract

Cotton (Gossypium hirsutum L.) is the most economically important crop in the world and produced 90% of the total natural cellulose fiber which is utilized to make cotton fabrics. The production of cotton is affected by many several diseases, and among them, viral disease, especially leaf curl, is the most destructive disease caused by a begomovirus transmitted by whiteflies vector. Plant biotechnology has provided an opportunity to develop transgenic plant with variable traits against biotic and abiotic stress such as resistance against pathogens, yield, quality, and salinity. Transgenic cotton (Gossypium hirsutum L., cv. Coker 312) plants were raised against leaf curl disease using bC1 gene in antisense orientation through Agrobacterium-mediated transformation somatic embryogenesis system. In this chapter, a standardized protocol will be given to raise virus resistance transgenic cotton.

Key words

CLCuV Cotton ßC1 gene Transformation Virus resistance 

References

  1. 1.
    Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186CrossRefGoogle Scholar
  2. 2.
    Duncan DR, Zehr UB (2010) (ed.), Cotton, Biotechnology in Agriculture and Forestry 65, Springer-Verlag, Berlin HeidelbergGoogle Scholar
  3. 3.
    Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204CrossRefGoogle Scholar
  4. 4.
    Davidonis GH, Hamilton RH (1983) Plant regeneration from callus tissue of Gossypium hirsutum L. Plant Sci Lett 32:89–93CrossRefGoogle Scholar
  5. 5.
    Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Biotechnology 5:263–266Google Scholar
  6. 6.
    Firoozabady E, DeBoer DL, Merlo DJ, Halk EL, Amerson LN, Rashka KE, Murray EE (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10:105–116CrossRefGoogle Scholar
  7. 7.
    Wu SJ, Wang HH, Li FF, Chen TZ, Zhang J, Jiang JJ, Ding Y, Guo WZ, Zhang TZ (2008) Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton via efficient selection and timely subculture of somatic embryos. Plant Mol Biol Rep 26:174–185CrossRefGoogle Scholar
  8. 8.
    Jin S, Zhang X, Liang S, Nie Y, Guo X, Huang C (2005) Factors affecting transformation efficiency of embryogenic callus of upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 81:229–237CrossRefGoogle Scholar
  9. 9.
    Noman A, Rohina B, Muhammad A, Sumera A, Wasif I, Madiha Z, Sara Z, Shahbaz K, Waqar I, Muhammad A (2016) Success of transgenic cotton (Gossypium hirsutum L.): Fiction or reality? Cog Food Agric 2:1207844Google Scholar
  10. 10.
    Rathore KS, Sunilkumar G, Cantrell RG, Reding HK, Hague S (2009) Compendium of transgenic crop plants. Transgenic sugar, tuber and fiber crops. Wiley Online Library, Hoboken, NJGoogle Scholar
  11. 11.
    Rahman M, Rao AQ, Batool F, Shahid AA, Husnain T (2012) Transgene copy number and phenotypic variations in transgenic basmati rice. J Anim Plant Sci 22:1004–1013Google Scholar
  12. 12.
    Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium -mediated transformation protocol for cotton (Gossypium hirsutum L.) : Embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22:465–470CrossRefGoogle Scholar
  13. 13.
    Aragao F, Vianna GR, Caravalheira SBRC, Rech EL (2005) Germ line genetic transformation in cotton (Gossypium hirsutum L.) by selection of transgenic meristematic cells with a herbicide molecule. Plant Sci 168:1227–1233CrossRefGoogle Scholar
  14. 14.
    Zhu SW, Gao P, Sun JS, Wang HH, Luo XM, Jiao MY, Wang ZY, Xia GX (2006) Genetic transformation of green-colored cotton. In Vitro Cell Dev Biol 42:439–444CrossRefGoogle Scholar
  15. 15.
    Rashid B, Saleem Z, Husnain T, Riazuddin S (2008) Transformation and inheritance of Bt genes in Gossypium hirsutum. J Plant Biol 51:248–254CrossRefGoogle Scholar
  16. 16.
    Ganesan M, Bhanumathi P, Ganesh KKL, Prabha A, Song PS, Jayabalan N (2009) Transgenic Indian cotton (Gossypium hirsutum) harboring rice chitinase gene (ChiII) confers resistance to two fungal pathogens. Am J Plant Biochem Biotechnol 5:6374Google Scholar
  17. 17.
    Miao W, Wang X, Li M, Song C, Wang Y, Hu D, Wang J (2010) Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biol 10:67CrossRefGoogle Scholar
  18. 18.
    Amudha J, Balasubramani G, Malathi VG, Monga D, Kranthi KR (2011) Cotton leaf curl virus resistance transgenics with antisense coat protein gene (AV1). Curr Sci 101:300–307Google Scholar
  19. 19.
    Chakrabarty PK, Kalbande B, Chavhan R, Warade J, Bajaj D, Sable S, Monga D (2011) Engineering cotton leaf curl virus resistance cotton through RNA interference approach. Mumbai: Proceedings of World Cotton Research Conference-5Google Scholar
  20. 20.
    Hashmi JA, Zafar Y, Arshad M, Mansoor S, Asad S (2011) Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences. Virus Genes 42:286–296CrossRefGoogle Scholar
  21. 21.
    Zhang B, Yang Y, Chen T, Yu W, Liu T, Li H, Chang Y (2012) Island cotton Gbve1Gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae. PLoS One 7:e51091CrossRefGoogle Scholar
  22. 22.
    Liu YD, Yin ZJ, Yu JW, Li J, Wei HL, Han XL, Shen FF (2012) Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. Biol Plant 56:237–246CrossRefGoogle Scholar
  23. 23.
    Yue Y, Zhang M, Zhang J, Tian X, Duan L, Li Z (2012) Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Exp Bot 63:3741–3748CrossRefGoogle Scholar
  24. 24.
    Wang M, Zhang B, Wang Q (2013) Cotton transformation via pollen tube pathway. Methods Mol Biol 958:71–77CrossRefGoogle Scholar
  25. 25.
    Ali I, Amin I, Briddon RW, Mansoor S (2013) Artificial microRNA-mediated resistance against the monopartite begomovirus cotton leaf curl Burewala virus. Virol J 10:231CrossRefGoogle Scholar
  26. 26.
    Palle SR, Campbell LM, Pandeya D, Puckhaber L, Tollack LK, Marcel S, Rathore KS (2013) RNAi-mediated Ultra-low gossypol cotton seed trait: Performance of transgenic lines under field conditions. Plant Biotechnol J 11:296–304CrossRefGoogle Scholar
  27. 27.
    Vajhala CS, Sadumpati VK, Nunna HR, Puligundla SK, Vudem DR, Khareedu VR (2013) Development of transgenic cotton lines expressing Allium sativum agglutinin (ASAL) for enhanced resistance against major sap-sucking pests. PLoS One 8(9):e72542CrossRefGoogle Scholar
  28. 28.
    Shamim Z, Rashid B, Rahman S, Husnain T (2013) Expression of drought tolerance in transgenic cotton. Sci Asia 39:1–11CrossRefGoogle Scholar
  29. 29.
    Zhang B (2013) Agrobacterium-mediated transformation of cotton. Methods Mol Biol 958:31–45CrossRefGoogle Scholar
  30. 30.
    Khan GA, Bakhsh A, Ghazanffar M, Riazuddin S, Husnain T (2013) Development of transgenic cotton pure lines harboring a pesticidal gene (cry1Ab). Emir J Food Agric 25:434–442CrossRefGoogle Scholar
  31. 31.
    Bakhsh A (2014) Engineering crop plants against abiotic stress, current achievements and future prospects. Emir J Food Agric 27:24–39CrossRefGoogle Scholar
  32. 32.
    Mittal A, Gampala SSL, Ritchie GL, Payton P, Burke J, Rock CD (2014) Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor co-expression in cotton enhances drought stress adaptation. Plant Biotechnol J 12:578–589CrossRefGoogle Scholar
  33. 33.
    Bajwa KS, Shahid AA, Rao AQ, Dahab AA, Muzaffar A, Rehman HU (2014) Stable genetic transformation in cotton (Gossypium hirsutum L.) using marker genes. Adv Crop Sci 3:811–821Google Scholar
  34. 34.
    Song X, Kain W, Cassidy D, Wang P (2015) Resistance to Bacillus thuringiensis toxin Cry2Ab in Trichoplusia ni is conferred by a novel genetic mechanism. Appl Environ Microbiol 81:5184–5195CrossRefGoogle Scholar
  35. 35.
    Li B, Yang Y, Hu WR, Li XD, Cao JQ, Fan L (2015) Over-expression of GhUGP1 in upland cotton improves fibre quality and reduces fibre sugar content. Plant Breed 134:197–202CrossRefGoogle Scholar
  36. 36.
    Bajwa KS, Shahid AA, Rao AQ, Bashir A, Aftab A, Husnain T (2015) Stable transformation and expression of GhEXPA8 fiber expansion gene to improve fiber length and micronaire value in cotton. Front Plant Sci 6:838CrossRefGoogle Scholar
  37. 37.
    Sohrab SS, Kamal MA, Ilah A, Husen A, Bhattacharya PS, Rana A (2016) Development of cotton leaf curl virus resistant transgenic cotton using antisense ßC1 gene. Saudi J Biol Sci 23:358–362CrossRefGoogle Scholar
  38. 38.
    Murashige T, Skoog F (1962) A Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. S. Sohrab
    • 1
  1. 1.Special Infectious Agents Unit, King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia

Personalised recommendations