Biomarkers for Microvascular Proteins Detection: Blood–Brain Barrier Injury and Damage Measurement

  • Pavani Sayana
  • Jean Pierre Oses
  • Tatiana Barichello
  • Vijayasree V. GiridharanEmail author
Part of the Neuromethods book series (NM, volume 142)


Blood–brain barrier (BBB) is a highly selective semipermeable membrane with tight junctions formed from closely wedged epithelial cells and is the principal regulator of exchange of materials between the blood and the brain, simultaneously protecting it from the systemic insults. Any impairment in the functional coordinated effort or formation of the components of the BBB neurovascular bundle may lead to neurological disturbances from entry of extraneous elements. The BBB disruption causes an imbalance in tight junction proteins, adherens junction proteins, matrix metalloproteinases, cell adhesion molecules, and a myriad of neuroinflammatory proteins. Therefore, the modalities, which can enable the accurate detection of BBB breach in advance via protein biomarker assay to underpin targeted medicines, are of growing priority. In this chapter, we will summarize the BBB pathology measurement methods used in the detection of microvascular protein biomarkers such as Western blot, immunohistochemistry (IHC), enzyme-linked immunosorbent assay (ELISA), and real-time polymerase chain reaction (RT-PCR). In addition, we also emphasize on the BBB genomics and the method used to detect functionally related BBB genes in preclinical model.

Key words

Blood–brain barrier Brain microvasculature Tight junction proteins Western blot Immunohistochemistry Elisa and RT-PCR 



The Translational Psychiatry Program is funded by the Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth). National Institute for Molecular Medicine (INCT-MM) and Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC).


  1. 1.
    Wilhelm I, Nyul-Toth A, Suciu M, Hermenean A, Krizbai IA (2016) Heterogeneity of the blood-brain barrier. Tissue barriers 4(1):e1143544. Scholar
  2. 2.
    Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin LL (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 110(Pt 14):1603–1613PubMedGoogle Scholar
  3. 3.
    Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142(1):117–127PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR (1998) ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol 141(1):199–208PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Anderson JM (1996) Cell signalling: MAGUK magic. Curr Biol 6(4):382–384PubMedCrossRefGoogle Scholar
  6. 6.
    Liu J, Wang F, Liu S, Du J, Hu X, Xiong J, Fang R, Chen W, Sun J (2017) Sodium butyrate exerts protective effect against Parkinson's disease in mice via stimulation of glucagon like peptide-1. J Neurol Sci 381:176–181. Scholar
  7. 7.
    Cheng X, Yang YL, Yang H, Wang YH, Du GH (2018) Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway. Int Immunopharmacol 56:29–35. Scholar
  8. 8.
    Stamatovic SM, Sladojevic N, Keep RF, Andjelkovic AV (2015) PDCD10 (CCM3) regulates brain endothelial barrier integrity in cerebral cavernous malformation type 3: role of CCM3-ERK1/2-cortactin cross-talk. Acta Neuropathol 130(5):731–750. Scholar
  9. 9.
    Lossinsky AS, Buttle KF, Pluta R, Mossakowski MJ, Wisniewski HM (1999) Immunoultrastructural expression of intercellular adhesion molecule-1 in endothelial cell vesiculotubular structures and vesiculovacuolar organelles in blood-brain barrier development and injury. Cell Tissue Res 295(1):77–88PubMedCrossRefGoogle Scholar
  10. 10.
    Williams KC, Zhao RW, Ueno K, Hickey WF (1996) PECAM-1 (CD31) expression in the central nervous system and its role in experimental allergic encephalomyelitis in the rat. J Neurosci Res 45(6):747–757PubMedCrossRefGoogle Scholar
  11. 11.
    Shukaliak JA, Dorovini-Zis K (2000) Expression of the beta-chemokines RANTES and MIP-1 beta by human brain microvessel endothelial cells in primary culture. J Neuropathol Exp Neurol 59(5):339–352PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang W, Smith C, Shapiro A, Monette R, Hutchison J, Stanimirovic D (1999) Increased expression of bioactive chemokines in human cerebromicrovascular endothelial cells and astrocytes subjected to simulated ischemia in vitro. J Neuroimmunol 101(2):148–160PubMedCrossRefGoogle Scholar
  13. 13.
    Roberts JM, Maniskas ME, Bix GJ (2018) Bilateral carotid artery stenosis causes unexpected early changes in brain extracellular matrix and blood-brain barrier integrity in mice. PLoS One 13(4):e0195765. Scholar
  14. 14.
    Pardridge WM (2007) Blood-brain barrier genomics. Stroke 38(2 Suppl):686–690. Scholar
  15. 15.
    Macdonald JA, Murugesan N, Pachter JS (2010) Endothelial cell heterogeneity of blood-brain barrier gene expression along the cerebral microvasculature. J Neurosci Res 88(7):1457–1474. Scholar
  16. 16.
    Lin R, Chen F, Wen S, Teng T, Pan Y, Huang H (2018) Interleukin-10 attenuates impairment of the blood-brain barrier in a severe acute pancreatitis rat model. J Inflamm (Lond) 15:4. Scholar
  17. 17.
    Yang S, Gu C, Mandeville ET, Dong Y, Esposito E, Zhang Y, Yang G, Shen Y, Fu X, Lo EH, Xie Z (2017) Anesthesia and surgery impair blood-brain barrier and cognitive function in mice. Front Immunol 8:902. Scholar
  18. 18.
    Yang Y, Yang LY, Orban L, Cuylear D, Thompson J, Simon B, Yang Y (2018) Non-invasive vagus nerve stimulation reduces blood-brain barrier disruption in a rat model of ischemic stroke. Brain Stimul 11(4):689–698. Scholar
  19. 19.
    Bangsow T, Baumann E, Bangsow C, Jaeger MH, Pelzer B, Gruhn P, Wolf S, von Melchner H, Stanimirovic DB (2008) The epithelial membrane protein 1 is a novel tight junction protein of the blood-brain barrier. J Cereb Blood Flow Metab 28(6):1249–1260. Scholar
  20. 20.
    Wang ZG, Cheng Y, Yu XC, Ye LB, Xia QH, Johnson NR, Wei X, Chen DQ, Cao G, Fu XB, Li XK, Zhang HY, Xiao J (2016) bFGF protects against blood-brain barrier damage through junction protein regulation via PI3K-Akt-Rac1 pathway following traumatic brain injury. Mol Neurobiol 53(10):7298–7311. Scholar
  21. 21.
    Mahmood T, Yang PC (2012) Western blot: technique, theory, and trouble shooting. N Am J Med Sci 4(9):429–434. Scholar
  22. 22.
    Bittner M, Kupferer P, Morris CF (1980) Electrophoretic transfer of proteins and nucleic acids from slab gels to diazobenzyloxymethyl cellulose or nitrocellulose sheets. Anal Biochem 102(2):459–471PubMedCrossRefGoogle Scholar
  23. 23.
    Burnette WN (1981) "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112(2):195–203PubMedCrossRefGoogle Scholar
  24. 24.
    McDonnell GV, McMillan SA, Douglas JP, Droogan AG, Hawkins SA (1999) Serum soluble adhesion molecules in multiple sclerosis: raised sVCAM-1, sICAM-1 and sE-selectin in primary progressive disease. J Neurol 246(2):87–92PubMedCrossRefGoogle Scholar
  25. 25.
    Pileri SA, Roncador G, Ceccarelli C, Piccioli M, Briskomatis A, Sabattini E, Ascani S, Santini D, Piccaluga PP, Leone O, Damiani S, Ercolessi C, Sandri F, Pieri F, Leoncini L, Falini B (1997) Antigen retrieval techniques in immunohistochemistry: comparison of different methods. J Pathol 183(1):116–123.<116::aid-path1087>;2-2PubMedCrossRefGoogle Scholar
  26. 26.
    Shusta EV, Boado RJ, Mathern GW, Pardridge WM (2002) Vascular genomics of the human brain. J Cereb Blood Flow Metab 22(3):245–252. Scholar
  27. 27.
    Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93(12):6025–6030PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Wang X, Ju S, Chen S, Gao W, Ding J, Wang G, Cao H, Tian H, Li X (2017) Effect of electro-acupuncture on neuroplasticity of spinal cord-transected rats. Med Sci Monit 23:4241–4251PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Chen K, Wang N, Diao Y, Dong W, Sun Y, Liu L, Wu X (2017) Hydrogen-rich saline attenuates brain injury induced by cardiopulmonary bypass and inhibits microvascular endothelial cell apoptosis via the PI3K/Akt/GSK3beta signaling pathway in rats. Cell Physiol Biochem 43(4):1634–1647. Scholar
  30. 30.
    Ramos-Vara JA, Miller MA (2014) When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry--the red, brown, and blue technique. Vet Pathol 51(1):42–87. Scholar
  31. 31.
    Nag S (1996) Immunohistochemical localization of extracellular matrix proteins in cerebral vessels in chronic hypertension. J Neuropathol Exp Neurol 55(3):381–388PubMedCrossRefGoogle Scholar
  32. 32.
    Simmons DA, Arriza JL, Swanson LW (1989) A complete protocol for in situ hybridization of messenger RNAs in brain and other tissues with radio-labeled singlestranded RNA probes. J Histotechnol 12:169–180CrossRefGoogle Scholar
  33. 33.
    Shi SR, Cote RJ, Taylor CR (1997) Antigen retrieval immunohistochemistry: past, present, and future. J Histochem Cytochem 45(3):327–343. Scholar
  34. 34.
    Sternberger LA, Hardy PH Jr, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18(5):315–333. Scholar
  35. 35.
    Hsu SM, Ree HJ (1980) Self-sandwich method. An improved immunoperoxidase technic for the detection of small amounts of antigens. Am J Clin Pathol 74(1):32–40PubMedCrossRefGoogle Scholar
  36. 36.
    Hsu SM, Raine L, Fanger H (1981) A comparative study of the peroxidase-antiperoxidase method and an avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am J Clin Pathol 75(5):734–738PubMedCrossRefGoogle Scholar
  37. 37.
    Elias JM, Margiotta M, Gaborc D (1989) Sensitivity and detection efficiency of the peroxidase antiperoxidase (PAP), avidin-biotin peroxidase complex (ABC), and peroxidase-labeled avidin-biotin (LAB) methods. Am J Clin Pathol 92(1):62–67PubMedCrossRefGoogle Scholar
  38. 38.
    Sabattini E, Bisgaard K, Ascani S, Poggi S, Piccioli M, Ceccarelli C, Pieri F, Fraternali-Orcioni G, Pileri SA (1998) The EnVision++ system: a new immunohistochemical method for diagnostics and research. Critical comparison with the APAAP, ChemMate, CSA, LABC, and SABC techniques. J Clin Pathol 51(7):506–511PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem 29(6):775PubMedCrossRefGoogle Scholar
  40. 40.
    Adams JC (1992) Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J Histochem Cytochem 40(10):1457–1463. Scholar
  41. 41.
    Nag S (2003) The blood-brain barrier. In: Biology and research protocols. Methods in molecular medicine. Humana Press, New YorkGoogle Scholar
  42. 42.
    Droogan AG, McMillan SA, Douglas JP, Hawkins SA (1996) Serum and cerebrospinal fluid levels of soluble adhesion molecules in multiple sclerosis: predominant intrathecal release of vascular cell adhesion molecule-1. J Neuroimmunol 64(2):185–191PubMedCrossRefGoogle Scholar
  43. 43.
    Correale J, Bassani Molinas Mde L (2003) Temporal variations of adhesion molecules and matrix metalloproteinases in the course of MS. J Neuroimmunol 140(1–2):198–209PubMedCrossRefGoogle Scholar
  44. 44.
    Duan H, Luo Y, Hao H, Feng L, Zhang Y, Lu D, Xing S, Feng J, Yang D, Song L, Yan X (2013) Soluble CD146 in cerebrospinal fluid of active multiple sclerosis. Neuroscience 235:16–26. Scholar
  45. 45.
    Acar G, Idiman F, Kirkali GOS, Oktay G, Cakmakci H, Idiman E (2005) Intrathecal sICAM-1 production in multiple sclerosis-correlation with triple dose Gd-DTPA MRI enhancement and IgG index. J Neurol 252(2):146–150. Scholar
  46. 46.
    Boado RJ, Pardridge MM (1991) A one-step procedure for isolation of poly(A)+ mRNA from isolated brain capillaries and endothelial cells in culture. J Neurochem 57(6):2136–2139PubMedCrossRefGoogle Scholar
  47. 47.
    Li JY, Boado RJ, Pardridge WM (2001) Blood-brain barrier genomics. J Cereb Blood Flow Metab 21(1):61–68. Scholar
  48. 48.
    Li JY, Boado RJ, Pardridge WM (2002) Rat blood-brain barrier genomics. II. J Cereb Blood Flow Metab 22(11):1319–1326. Scholar
  49. 49.
    Boado RJ, Li JY, Nagaya M, Zhang C, Pardridge WM (1999) Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc Natl Acad Sci U S A 96(21):12079–12084PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sambrook J, Russell DW (2001) Molecular cloning. In: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  51. 51.
    Macdonald JA, Murugesan N, Pachter JS (2008) Validation of immuno-laser capture microdissection coupled with quantitative RT-PCR to probe blood-brain barrier gene expression in situ. J Neurosci Methods 174(2):219–226. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Pavani Sayana
    • 1
  • Jean Pierre Oses
    • 2
  • Tatiana Barichello
    • 3
    • 4
  • Vijayasree V. Giridharan
    • 1
    Email author
  1. 1.Translational Psychiatry Program, Department of Psychiatry and Behavioral SciencesMcGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth)HoustonUSA
  2. 2.Postgraduate Program in Health and BehaviorCenter for Life Sciences and Health, Catholic University of Pelotas (UCPel)PelotasBrazil
  3. 3.Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at Houston (UTHealth)HoustonUSA
  4. 4.Graduate Program in Health SciencesUniversity of Southern Santa Catarina (UNESC)CriciúmaBrazil

Personalised recommendations