Advertisement

Methods of Delivering Molecules Through the Blood-Brain Barrier for Brain Diagnostics and Therapeutics

  • Brian M. Kopec
  • Kavisha R. Ulapane
  • Mario E. G. Moral
  • Teruna J. SiahaanEmail author
Protocol
Part of the Neuromethods book series (NM, volume 142)

Abstract

Brain diseases such as Alzheimer’s, Parkinson’s, multiple sclerosis (MS), and brain tumors are difficult to diagnose and treat. This is partly due to the difficulty in delivering diagnostic and therapeutic molecules across the blood-brain barrier (BBB) and into the brain. This chapter describes these and other challenges and the progress that has been made in transporting molecules into the brain. The pathways that molecules can take to cross the BBB and methods to improve the passage of diagnostics and therapeutic molecules into the brain are described. Several advances in improving detection of molecules in the brain using imaging methods (i.e., MRI, PET, SPECT, NIR) are described as potential diagnostic tools for brain diseases.

Key words

Blood-brain barrier (BBB) Brain delivery Brain therapeutics Brain diagnostics Brain diseases 

Notes

Acknowledgments

The authors acknowledge the research support from an R01-NS075374 grant from the National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH). B.M.K. thanks the support from NIH Predoctoral Training Program on Pharmaceutical Aspects of Biotechnology (T32-GM008359). M.E.G.M. thanks the NIH for NIH for an IRACDA postdoctoral fellowship (5K12-GM063651). We would like to thank Nancy Harmony for proofreading this manuscript.

References

  1. 1.
    Schabitz WR, Schwab S, Spranger M, Hacke W (1997) Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. J Cereb Blood Flow Metab 17(5):500–506.  https://doi.org/10.1097/00004647-199705000-00003PubMedCrossRefGoogle Scholar
  2. 2.
    Laksitorini M, Prasasty VD, Kiptoo PK, Siahaan TJ (2014) Pathways and progress in improving drug delivery through the intestinal mucosa and blood-brain barriers. Ther Deliv 5(10):1143–1163.  https://doi.org/10.4155/tde.14.67PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lutz KL, Siahaan TJ (1997) Molecular structure of the apical junction complex and its contribution to the paracellular barrier. J Pharm Sci 86:977–984PubMedCrossRefGoogle Scholar
  4. 4.
    Zheng K, Trivedi M, Siahaan TJ (2006) Structure and function of the intercellular junctions: barrier of paracellular drug delivery. Curr Pharm Des 12:2813–2824PubMedCrossRefGoogle Scholar
  5. 5.
    Kiptoo P, Laksitorini MD, Siahaan TJ (2013) Blood-brain peptides: peptide delivery. In: Kastin A (ed) Handbook of biologically active peptides. Academic Press, Boston, MA, pp 1702–1710CrossRefGoogle Scholar
  6. 6.
    Adson A, Raub TJ, Burton PS, Barsuhn CL, Hilgers AR, Audus KL, Ho NFH (1994) Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J Pharm Sci 83:1529–1536PubMedCrossRefGoogle Scholar
  7. 7.
    Gumbleton M, Audus KL (2001) Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J Pharm Sci 90:1681–1698PubMedCrossRefGoogle Scholar
  8. 8.
    Kuntz M, Mysiorek C, Petrault O, Petrault M, Uzbekov R, Bordet R, Fenart L, Cecchelli R, Berezowski V (2014) Stroke-induced brain parenchymal injury drives blood-brain barrier early leakage kinetics: a combined in vivo/in vitro study. J Cereb Blood Flow Metab 34(1):95–107.  https://doi.org/10.1038/jcbfm.2013.169PubMedCrossRefGoogle Scholar
  9. 9.
    Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV (2014) A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci Rep 4:4160.  https://doi.org/10.1038/srep04160PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wilhelm I, Krizbai IA (2014) In vitro models of the blood-brain barrier for the study of drug delivery to the brain. Mol Pharm 11(7):1949–1963.  https://doi.org/10.1021/mp500046fPubMedCrossRefGoogle Scholar
  11. 11.
    Chen S, Einspanier R, Schoen J (2015) Transepithelial electrical resistance (TEER): a functional parameter to monitor the quality of oviduct epithelial cells cultured on filter supports. Histochem Cell Biol 144(5):509–515.  https://doi.org/10.1007/s00418-015-1351-1PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Cucullo L, Marchi N, Hossain M, Janigro D (2011) A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system. J Cereb Blood Flow Metab 31(2):767–777.  https://doi.org/10.1038/jcbfm.2010.162PubMedCrossRefGoogle Scholar
  13. 13.
    Griep LM, Wolbers F, de Wagenaar B, ter Braak PM, Weksler BB, Romero IA, Couraud PO, Vermes I, van der Meer AD, van den Berg A (2013) BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices 15(1):145–150.  https://doi.org/10.1007/s10544-012-9699-7PubMedCrossRefGoogle Scholar
  14. 14.
    Shityakov S, Salvador E, Förster C (2013) In silico, in vitro and in vivo methods to analyse drug permeation across the blood–brain barrier: a critical review. OA Anaesthetics 1:1–7CrossRefGoogle Scholar
  15. 15.
    Carpenter TS, Kirshner DA, Lau EY, Wong SE, Nilmeier JP, Lightstone FC (2014) A method to predict blood-brain barrier permeability of drug-like compounds using molecular dynamics simulations. Biophys J 107(3):630–641.  https://doi.org/10.1016/j.bpj.2014.06.024PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26PubMedCrossRefGoogle Scholar
  17. 17.
    Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341.  https://doi.org/10.1016/j.ddtec.2004.11.007PubMedCrossRefGoogle Scholar
  18. 18.
    Lipinski CA (2016) Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv Drug Deliv Rev 101:34–41.  https://doi.org/10.1016/j.addr.2016.04.029PubMedCrossRefGoogle Scholar
  19. 19.
    Lecomte JM, Costentin J, Vlaiculescu A, Chaillet P, Marcais-Collado H, Llorens-Cortes C, Leboyer M, Schwartz JC (1986) Pharmacological properties of acetorphan, a parenterally active “enkephalinase” inhibitor. J Pharmacol Exp Ther 237(3):937–944PubMedGoogle Scholar
  20. 20.
    Oldendorf WH, Hyman S, Braun L, Oldendorf SZ (1972) Blood-brain barrier: penetration of morphine, codeine, heroin, and methadone after carotid injection. Science 178(4064):984–986PubMedCrossRefGoogle Scholar
  21. 21.
    Banks WA (2009) Characteristics of compounds that cross the blood-brain barrier. BMC Neurol 9(Suppl 1):S3.  https://doi.org/10.1186/1471-2377-9-S1-S3PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Stella VJ, Nti-Addae KW (2007) Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev 59(7):677–694.  https://doi.org/10.1016/j.addr.2007.05.013PubMedCrossRefGoogle Scholar
  23. 23.
    Dhareshwar SS, Stella VJ (2010) A novel prodrug strategy for beta-dicarbonyl carbon acids: syntheses and evaluation of the physicochemical characteristics of C-phosphoryloxymethyl (POM) and phosphoryloxymethyloxymethyl (POMOM) prodrug derivatives. J Pharm Sci 99(6):2711–2723.  https://doi.org/10.1002/jps.22021PubMedCrossRefGoogle Scholar
  24. 24.
    Borchardt RT, Jeffrey A, Siahaan TJ, Gangwar S, Pauletti GM (1997) Improvement of oral peptide bioavailability: peptidomimetics and prodrug strategies. Adv Drug Deliv Rev 27(2–3):235–256.  https://doi.org/10.1016/S0169-409X(97)00045-8. pii: S0169409X97000458CrossRefGoogle Scholar
  25. 25.
    Gangwar S, Pauletti GM, Siahaan TJ, Stella VJ, Borchardt RT (1999) Synthesis of an esterase-sensitive cyclic prodrug of a model hexapeptide having enhanced membrane permeability and enzymatic stability using an acyloxyalkoxy promoiety. Methods Mol Med 23:37–51.  https://doi.org/10.1385/0-89603-517-4:37PubMedCrossRefGoogle Scholar
  26. 26.
    He HT, Xu CR, Song X, Siahaan TJ (2003) Syntheses of cyclic prodrugs of RGD peptidomimetics with various macrocyclic ring sizes: evaluation of physicochemical, transport and antithrombic properties. J Pept Res 61(6):331–342PubMedCrossRefGoogle Scholar
  27. 27.
    Song X, He HT, Siahaan TJ (2002) Synthesis of cyclic prodrugs of Aggrastat and its analogue with a modified phenylpropionic acid linker. Org Lett 4(4):549–552PubMedCrossRefGoogle Scholar
  28. 28.
    Song X, Xu CR, He HT, Siahaan TJ (2002) Synthesis of a novel cyclic prodrug of RGD peptidomimetic to improve its cell membrane permeation. Bioorg Chem 30(4):285–301PubMedCrossRefGoogle Scholar
  29. 29.
    Wang W, Camenisch G, Sane DC, Zhang H, Hugger E, Wheeler GL, Borchardt RT, Wang B (2000) A coumarin-based prodrug strategy to improve the oral absorption of RGD peptidomimetics. J Control Release 65(1–2):245–251PubMedCrossRefGoogle Scholar
  30. 30.
    Pauletti GM, Gangwar S, Okumu FW, Siahaan TJ, Stella VJ, Borchardt RT (1996) Esterase-sensitive cyclic prodrugs of peptides: evaluation of an acyloxyalkoxy promoiety in a model hexapeptide. Pharm Res 13:1613–1621CrossRefGoogle Scholar
  31. 31.
    Gudmundsson OS, Pauletti GM, Wang W, Shan D, Zhang H, Wang B, Borchardt RT (1999) Coumarinic acid-based cyclic prodrugs of opioid peptides that exhibit metabolic stability to peptidases and excellent cellular permeability. Pharm Res 16(1):7–15PubMedCrossRefGoogle Scholar
  32. 32.
    Boado RJ, Zhang Y, Wang Y, Pardridge WM (2009) Engineering and expression of a chimeric transferrin receptor monoclonal antibody for blood-brain barrier delivery in the mouse. Biotechnol Bioeng 102(4):1251–1258.  https://doi.org/10.1002/bit.22135PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Boado RJ, Zhang Y, Zhang Y, Pardridge WM (2007) Genetic engineering, expression, and activity of a fusion protein of a human neurotrophin and a molecular Trojan horse for delivery across the human blood-brain barrier. Biotechnol Bioeng 97(6):1376–1386.  https://doi.org/10.1002/bit.21369PubMedCrossRefGoogle Scholar
  34. 34.
    Boado RJ, Zhou QH, Lu JZ, Hui EK, Pardridge WM (2010) Pharmacokinetics and brain uptake of a genetically engineered bifunctional fusion antibody targeting the mouse transferrin receptor. Mol Pharm 7(1):237–244.  https://doi.org/10.1021/mp900235kPubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Pardridge WM (2002) Blood-brain barrier drug targeting enables neuroprotection in brain ischemia following delayed intravenous administration of neurotrophins. Adv Exp Med Biol 513:397–430PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang Y, Pardridge WM (2006) Blood-brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion. Brain Res 1111(1):227–229.  https://doi.org/10.1016/j.brainres.2006.07.005PubMedCrossRefGoogle Scholar
  37. 37.
    Paterson J, Webster CI (2016) Exploiting transferrin receptor for delivering drugs across the blood-brain barrier. Drug Discov Today Technol 20:49–52.  https://doi.org/10.1016/j.ddtec.2016.07.009PubMedCrossRefGoogle Scholar
  38. 38.
    Friden PM, Walus LR, Musso GF, Taylor MA, Malfroy B, Starzyk RM (1991) Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc Natl Acad Sci U S A 88(11):4771–4775PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312(5990):162–163PubMedCrossRefGoogle Scholar
  40. 40.
    Pardridge WM, Buciak JL, Friden PM (1991) Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo. J Pharmacol Exp Ther 259(1):66–70PubMedGoogle Scholar
  41. 41.
    Moos T, Morgan EH (1998) Evidence for low molecular weight, non-transferrin-bound iron in rat brain and cerebrospinal fluid. J Neurosci Res 54(4):486–494.  https://doi.org/10.1002/(SICI)1097-4547(19981115)54:4<486::AID-JNR6>3.0.CO;2-IPubMedCrossRefGoogle Scholar
  42. 42.
    Kharitonova T, Ahmed N, Thoren M, Wardlaw JM, von Kummer R, Glahn J, Wahlgren N (2009) Hyperdense middle cerebral artery sign on admission CT scan—prognostic significance for ischaemic stroke patients treated with intravenous thrombolysis in the safe implementation of thrombolysis in Stroke International Stroke Thrombolysis Register. Cerebrovasc Dis 27(1):51–59.  https://doi.org/10.1159/000172634. pii: 000172634PubMedCrossRefGoogle Scholar
  43. 43.
    Lee HJ, Engelhardt B, Lesley J, Bickel U, Pardridge WM (2000) Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. J Pharmacol Exp Ther 292(3):1048–1052PubMedGoogle Scholar
  44. 44.
    Shi N, Zhang Y, Zhu C, Boado RJ, Pardridge WM (2001) Brain-specific expression of an exogenous gene after i.v. administration. Proc Natl Acad Sci U S A 98(22):12754–12759.  https://doi.org/10.1073/pnas.221450098PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lee HJ, Zhang Y, Zhu C, Duff K, Pardridge WM (2002) Imaging brain amyloid of Alzheimer disease in vivo in transgenic mice with an Abeta peptide radiopharmaceutical. J Cereb Blood Flow Metab 22(2):223–231.  https://doi.org/10.1097/00004647-200202000-00010PubMedCrossRefGoogle Scholar
  46. 46.
    Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, Atwal J, Elliott JM, Prabhu S, Watts RJ, Dennis MS (2011) Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med 3(84):84ra44.  https://doi.org/10.1126/scitranslmed.3002230PubMedCrossRefGoogle Scholar
  47. 47.
    Sade H, Baumgartner C, Hugenmatter A, Moessner E, Freskgard PO, Niewoehner J (2014) A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PLoS One 9(4):e96340.  https://doi.org/10.1371/journal.pone.0096340PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bien-Ly N, Yu YJ, Bumbaca D, Elstrott J, Boswell CA, Zhang Y, Luk W, Lu Y, Dennis MS, Weimer RM, Chung I, Watts RJ (2014) Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med 211(2):233–244.  https://doi.org/10.1084/jem.20131660PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H, Maier P, Rueger P, Stracke JO, Lau W, Tissot AC, Loetscher H, Ghosh A, Freskgard PO (2014) Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81(1):49–60.  https://doi.org/10.1016/j.neuron.2013.10.061PubMedCrossRefGoogle Scholar
  50. 50.
    Wang YY, Lui PC, Li JY (2009) Receptor-mediated therapeutic transport across the blood-brain barrier. Immunotherapy 1(6):983–993.  https://doi.org/10.2217/imt.09.75PubMedCrossRefGoogle Scholar
  51. 51.
    van Rooy I, Mastrobattista E, Storm G, Hennink WE, Schiffelers RM (2011) Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. J Control Release 150(1):30–36.  https://doi.org/10.1016/j.jconrel.2010.11.014PubMedCrossRefGoogle Scholar
  52. 52.
    Gaillard PJ, de Boer AG (2006) A novel opportunity for targeted drug delivery to the brain. J Control Release 116(2):e60–e62.  https://doi.org/10.1016/j.jconrel.2006.09.050PubMedCrossRefGoogle Scholar
  53. 53.
    Gaillard PJ, Visser CC, de Boer AG (2005) Targeted delivery across the blood-brain barrier. Expert Opin Drug Deliv 2(2):299–309.  https://doi.org/10.1517/17425247.2.2.299PubMedCrossRefGoogle Scholar
  54. 54.
    Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 71(2):251–256.  https://doi.org/10.1016/j.ejpb.2008.08.021PubMedCrossRefGoogle Scholar
  55. 55.
    Laskowitz DT, Thekdi AD, Thekdi SD, Han SK, Myers JK, Pizzo SV, Bennett ER (2001) Downregulation of microglial activation by apolipoprotein E and apoE-mimetic peptides. Exp Neurol 167(1):74–85.  https://doi.org/10.1006/exnr.2001.7541PubMedCrossRefGoogle Scholar
  56. 56.
    van Rooy I, Cakir-Tascioglu S, Hennink WE, Storm G, Schiffelers RM, Mastrobattista E (2011) In vivo methods to study uptake of nanoparticles into the brain. Pharm Res 28(3):456–471.  https://doi.org/10.1007/s11095-010-0291-7PubMedCrossRefGoogle Scholar
  57. 57.
    Fakhari A, Baoum A, Siahaan TJ, Le KB, Berkland C (2011) Controlling ligand surface density optimizes nanoparticle binding to ICAM-1. J Pharm Sci 100(3):1045–1056.  https://doi.org/10.1002/jps.22342PubMedCrossRefGoogle Scholar
  58. 58.
    Koning GA, Schiffelers RM, Wauben MH, Kok RJ, Mastrobattista E, Molema G, ten Hagen TL, Storm G (2006) Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate-containing RGD peptide liposomes inhibits experimental arthritis. Arthritis Rheum 54(4):1198–1208.  https://doi.org/10.1002/art.21719PubMedCrossRefGoogle Scholar
  59. 59.
    Gonzalez-Chavez SA, Arevalo-Gallegos S, Rascon-Cruz Q (2009) Lactoferrin: structure, function and applications. Int J Antimicrob Agents 33(4):301.e1–301.e8.  https://doi.org/10.1016/j.ijantimicag.2008.07.020CrossRefGoogle Scholar
  60. 60.
    Qiao R, Jia Q, Huwel S, Xia R, Liu T, Gao F, Galla HJ, Gao M (2012) Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano 6(4):3304–3310.  https://doi.org/10.1021/nn300240pPubMedCrossRefGoogle Scholar
  61. 61.
    Ji B, Maeda J, Higuchi M, Inoue K, Akita H, Harashima H, Suhara T (2006) Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci 78(8):851–855.  https://doi.org/10.1016/j.lfs.2005.05.085PubMedCrossRefGoogle Scholar
  62. 62.
    Jain KK (2012) Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine (Lond) 7(8):1225–1233.  https://doi.org/10.2217/nnm.12.86CrossRefGoogle Scholar
  63. 63.
    Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, Yin VP, Lockman P, Bai S (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32(6):2003–2014.  https://doi.org/10.1007/s11095-014-1593-yPubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345.  https://doi.org/10.1038/nbt.1807PubMedCrossRefGoogle Scholar
  65. 65.
    Albright BH, Storey CM, Murlidharan G, Rivera RMC, Berry GE, Madigan VJ, Asokan A (2018) Mapping the structural determinants required for AAVrh.10 transport across the blood-brain barrier. Mol Ther 26:510–523.  https://doi.org/10.1016/j.ymthe.2017.10.017PubMedCrossRefGoogle Scholar
  66. 66.
    Agbandje-McKenna M, Kleinschmidt J (2011) AAV capsid structure and cell interactions. Methods Mol Biol 807:47–92.  https://doi.org/10.1007/978-1-61779-370-7_3PubMedCrossRefGoogle Scholar
  67. 67.
    Madigan VJ, Asokan A (2016) Engineering AAV receptor footprints for gene therapy. Curr Opin Virol 18:89–96.  https://doi.org/10.1016/j.coviro.2016.05.001PubMedCrossRefGoogle Scholar
  68. 68.
    Neuwelt EA (1984) Therapeutic potential for blood-brain barrier modification in malignant brain tumor. Prog Exp Tumor Res 28:51–66PubMedCrossRefGoogle Scholar
  69. 69.
    Neuwelt EA, Barnett PA, McCormick CI, Remsen LG, Kroll RA, Sexton G (1998) Differential permeability of a human brain tumor xenograft in the nude rat: impact of tumor size and method of administration on optimizing delivery of biologically diverse agents. Clin Cancer Res 4(6):1549–1555PubMedGoogle Scholar
  70. 70.
    Neuwelt EA, Brummett RE, Doolittle ND, Muldoon LL, Kroll RA, Pagel MA, Dojan R, Church V, Remsen LG, Bubalo JS (1998) First evidence of otoprotection against carboplatin-induced hearing loss with a two-compartment system in patients with central nervous system malignancy using sodium thiosulfate. J Pharmacol Exp Ther 286(1):77–84PubMedGoogle Scholar
  71. 71.
    Neuwelt EA, Brummett RE, Remsen LG, Kroll RA, Pagel MA, McCormick CI, Guitjens S, Muldoon LL (1996) In vitro and animal studies of sodium thiosulfate as a potential chemoprotectant against carboplatin-induced ototoxicity. Cancer Res 56(4):706–709PubMedGoogle Scholar
  72. 72.
    Neuwelt EA, Frenkel EP, D’Agostino AN, Carney DN, Minna JD, Barnett PA, McCormick CI (1985) Growth of human lung tumor in the brain of the nude rat as a model to evaluate antitumor agent delivery across the blood-brain barrier. Cancer Res 45(6):2827–2833PubMedGoogle Scholar
  73. 73.
    Neuwelt EA, Hill SA, Frenkel EP (1984) Osmotic blood-brain barrier modification and combination chemotherapy: concurrent tumor regression in areas of barrier opening and progression in brain regions distant to barrier opening. Neurosurgery 15(3):362–366PubMedCrossRefGoogle Scholar
  74. 74.
    Neuwelt EA, Pagel MA, Kraemer DF, Peterson DR, Muldoon LL (2004) Bone marrow chemoprotection without compromise of chemotherapy efficacy in a rat brain tumor model. J Pharmacol Exp Ther 309(2):594–599.  https://doi.org/10.1124/jpet.103.063347. pii: jpet.103.063347PubMedCrossRefGoogle Scholar
  75. 75.
    Neuwelt EA, Specht HD, Barnett PA, Dahlborg SA, Miley A, Larson SM, Brown P, Eckerman KF, Hellstrom KE, Hellstrom I (1987) Increased delivery of tumor-specific monoclonal antibodies to brain after osmotic blood-brain barrier modification in patients with melanoma metastatic to the central nervous system. Neurosurgery 20(6):885–895PubMedCrossRefGoogle Scholar
  76. 76.
    Neuwelt EA, Specht HD, Hill SA (1986) Permeability of human brain tumor to 99mTc-gluco-heptonate and 99mTc-albumin. Implications for monoclonal antibody therapy. J Neurosurg 65(2):194–198.  https://doi.org/10.3171/jns.1986.65.2.0194PubMedCrossRefGoogle Scholar
  77. 77.
    Muldoon LL, Neuwelt EA (2003) BR96-DOX immunoconjugate targeting of chemotherapy in brain tumor models. J Neuro-Oncol 65(1):49–62CrossRefGoogle Scholar
  78. 78.
    Zwanziger D, Hackel D, Staat C, Bocker A, Brack A, Beyermann M, Rittner H, Blasig IE (2012) A peptidomimetic tight junction modulator to improve regional analgesia. Mol Pharm 9(6):1785–1794.  https://doi.org/10.1021/mp3000937PubMedCrossRefGoogle Scholar
  79. 79.
    Tavelin S, Hashimoto K, Malkinson J, Lazorova L, Toth I, Artursson P (2003) A new principle for tight junction modulation based on occludin peptides. Mol Pharmacol 64:1530–1540PubMedCrossRefGoogle Scholar
  80. 80.
    Yuan X, Lin X, Manorek G, Howell SB (2011) Challenges associated with the targeted delivery of gelonin to claudin-expressing cancer cells with the use of activatable cell penetrating peptides to enhance potency. BMC Cancer 11:61.  https://doi.org/10.1186/1471-2407-11-61PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Makagiansar I, Avery M, Hu Y, Audus KL, Siahaan TJ (2001) Improving the selectivity of HAV-peptides in modulating E-cadherin-E-cadherin interactions in the intercellular junction of MDCK cell monolayers. Pharm Res 18:446–553PubMedCrossRefGoogle Scholar
  82. 82.
    Sinaga E, Jois SD, Avery M, Makagiansar IT, Tambunan US, Audus KL, Siahaan TJ (2002) Increasing paracellular porosity by E-cadherin peptides: discovery of bulge and groove regions in the EC1-domain of E-cadherin. Pharm Res 19:1170–1179PubMedCrossRefGoogle Scholar
  83. 83.
    Calcagno AM, Fostel JM, Reyner EL, Sinaga E, Alston JT, Mattes WB, Siahaan TJ, Ware JA (2004) Effects of an E-cadherin-derived peptide on the gene expression of Caco-2 cells. Pharm Res 21:2095–2104CrossRefGoogle Scholar
  84. 84.
    Kiptoo P, Sinaga E, Calcagno AM, Zhao H, Kobayashi N, Tambunan US, Siahaan TJ (2011) Enhancement of drug absorption through the blood-brain barrier and inhibition of intercellular tight junction resealing by E-cadherin peptides. Mol Pharm 8(1):239–249.  https://doi.org/10.1021/mp100293mPubMedCrossRefGoogle Scholar
  85. 85.
    Alaofi A, On N, Kiptoo P, Williams TD, Miller DW, Siahaan TJ (2016) Comparison of linear and cyclic His-Ala-Val peptides in modulating the blood-brain barrier permeability: impact on delivery of molecules to the brain. J Pharm Sci 105(2):797–807.  https://doi.org/10.1016/S0022-3549(15)00188-4PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Laksitorini MD, Kiptoo PK, On NH, Thliveris JA, Miller DW, Siahaan TJ (2015) Modulation of intercellular junctions by cyclic-ADT peptides as a method to reversibly increase blood-brain barrier permeability. J Pharm Sci 104(3):1065–1075.  https://doi.org/10.1002/jps.24309PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    On NH, Kiptoo P, Siahaan TJ, Miller DW (2014) Modulation of blood-brain barrier permeability in mice using synthetic E-cadherin peptide. Mol Pharm 11(3):974–981.  https://doi.org/10.1021/mp400624vPubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Tabanor K, Lee P, Kiptoo P, Choi IY, Sherry EB, Eagle CS, Williams TD, Siahaan TJ (2016) Brain delivery of drug and MRI contrast agent: detection and quantitative determination of brain deposition of CPT-Glu using LC-MS/MS and Gd-DTPA using magnetic resonance imaging. Mol Pharm 13(2):379–390.  https://doi.org/10.1021/acs.molpharmaceut.5b00607PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ulapane KR, On N, Kiptoo P, Williams TD, Miller DW, Siahaan TJ (2017) Improving brain delivery of biomolecules via BBB modulation in mouse and rat: detection using MRI, NIRF, mass spectrometry. Nanotheranostics 1:217–231PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Alaofi A, Farokhi E, Prasasty VD, Anbanandam A, Kuczera K, Siahaan TJ (2017) Probing the interaction between cHAVc3 peptide and the EC1 domain of E-cadherin using NMR and molecular dynamics simulations. J Biomol Struct Dyn 35(1):92–104.  https://doi.org/10.1080/07391102.2015.1133321PubMedCrossRefGoogle Scholar
  91. 91.
    Pulli B, Chen JW (2014) Imaging neuroinflammation—from bench to bedside. J Clin Cell Immunol 5:226.  https://doi.org/10.4172/2155-9899.1000226PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Steinman L (2005) Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nat Rev Drug Discov 4(6):510–518.  https://doi.org/10.1038/nrd1752PubMedCrossRefGoogle Scholar
  93. 93.
    Yusuf-Makagiansar H, Anderson ME, Yakovleva TV, Murray JS, Siahaan TJ (2002) Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med Res Rev 22(2):146–167PubMedCrossRefGoogle Scholar
  94. 94.
    Sipkins DA, Gijbels K, Tropper FD, Bednarski M, Li KC, Steinman L (2000) ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging. J Neuroimmunol 104(1):1–9PubMedCrossRefGoogle Scholar
  95. 95.
    Zivadinov R, Rudick RA, De Masi R, Nasuelli D, Ukmar M, Pozzi-Mucelli RS, Grop A, Cazzato G, Zorzon M (2001) Effects of IV methylprednisolone on brain atrophy in relapsing-remitting MS. Neurology 57(7):1239–1247PubMedCrossRefGoogle Scholar
  96. 96.
    Pirko I, Johnson A, Gamez J, Macura SI, Rodriguez M (2004) Disappearing “T1 black holes” in an animal model of multiple sclerosis. Front Biosci 9:1222–1227PubMedCrossRefGoogle Scholar
  97. 97.
    Nessler S, Boretius S, Stadelmann C, Bittner A, Merkler D, Hartung HP, Michaelis T, Bruck W, Frahm J, Sommer N, Hemmer B (2007) Early MRI changes in a mouse model of multiple sclerosis are predictive of severe inflammatory tissue damage. Brain 130(Pt 8):2186–2198.  https://doi.org/10.1093/brain/awm105PubMedCrossRefGoogle Scholar
  98. 98.
    Floris S, Blezer EL, Schreibelt G, Dopp E, van der Pol SM, Schadee-Eestermans IL, Nicolay K, Dijkstra CD, de Vries HE (2004) Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study. Brain 127(Pt 3):616–627.  https://doi.org/10.1093/brain/awh068PubMedCrossRefGoogle Scholar
  99. 99.
    Boven LA, Van Meurs M, Van Zwam M, Wierenga-Wolf A, Hintzen RQ, Boot RG, Aerts JM, Amor S, Nieuwenhuis EE, Laman JD (2006) Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 129(Pt 2):517–526.  https://doi.org/10.1093/brain/awh707PubMedCrossRefGoogle Scholar
  100. 100.
    Brochet B, Deloire MS, Touil T, Anne O, Caille JM, Dousset V, Petry KG (2006) Early macrophage MRI of inflammatory lesions predicts lesion severity and disease development in relapsing EAE. NeuroImage 32(1):266–274.  https://doi.org/10.1016/j.neuroimage.2006.03.028PubMedCrossRefGoogle Scholar
  101. 101.
    Stroh A, Zimmer C, Werner N, Gertz K, Weir K, Kronenberg G, Steinbrink J, Mueller S, Sieland K, Dirnagl U, Nickenig G, Endres M (2006) Tracking of systemically administered mononuclear cells in the ischemic brain by high-field magnetic resonance imaging. NeuroImage 33(3):886–897.  https://doi.org/10.1016/j.neuroimage.2006.07.009PubMedCrossRefGoogle Scholar
  102. 102.
    McAteer MA, Sibson NR, von Zur MC, Schneider JE, Lowe AS, Warrick N, Channon KM, Anthony DC, Choudhury RP (2007) In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 13(10):1253–1258.  https://doi.org/10.1038/nm1631PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Serres S, Mardiguian S, Campbell SJ, McAteer MA, Akhtar A, Krapitchev A, Choudhury RP, Anthony DC, Sibson NR (2011) VCAM-1-targeted magnetic resonance imaging reveals subclinical disease in a mouse model of multiple sclerosis. FASEB J 25(12):4415–4422.  https://doi.org/10.1096/fj.11-183772PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Deddens LH, van Tilborg GA, van der Toorn A, van der Marel K, Paulis LE, van Bloois L, Storm G, Strijkers GJ, Mulder WJ, de Vries HE, Dijkhuizen RM (2013) MRI of ICAM-1 upregulation after stroke: the importance of choosing the appropriate target-specific particulate contrast agent. Mol Imaging Biol 15(4):411–422.  https://doi.org/10.1007/s11307-013-0617-zPubMedCrossRefGoogle Scholar
  105. 105.
    Zhu Y, Ling Y, Zhong J, Liu X, Wei K, Huang S (2012) Magnetic resonance imaging of radiation-induced brain injury using targeted microparticles of iron oxide. Acta Radiol 53(7):812–819.  https://doi.org/10.1258/ar.2012.120040PubMedCrossRefGoogle Scholar
  106. 106.
    Querol M, Chen JW, Bogdanov AA Jr (2006) A paramagnetic contrast agent with myeloperoxidase-sensing properties. Org Biomol Chem 4(10):1887–1895.  https://doi.org/10.1039/b601540aPubMedCrossRefGoogle Scholar
  107. 107.
    Chen JW, Breckwoldt MO, Aikawa E, Chiang G, Weissleder R (2008) Myeloperoxidase-targeted imaging of active inflammatory lesions in murine experimental autoimmune encephalomyelitis. Brain 131(Pt 4):1123–1133.  https://doi.org/10.1093/brain/awn004PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Towner RA, Smith N, Saunders D, Henderson M, Downum K, Lupu F, Silasi-Mansat R, Ramirez DC, Gomez-Mejiba SE, Bonini MG, Ehrenshaft M, Mason RP (2012) In vivo imaging of immuno-spin trapped radicals with molecular magnetic resonance imaging in a diabetic mouse model. Diabetes 61(10):2405–2413.  https://doi.org/10.2337/db11-1540PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Beer AJ, Lorenzen S, Metz S, Herrmann K, Watzlowik P, Wester HJ, Peschel C, Lordick F, Schwaiger M (2008) Comparison of integrin alphaVbeta3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDG. J Nucl Med 49(1):22–29.  https://doi.org/10.2967/jnumed.107.045864PubMedCrossRefGoogle Scholar
  110. 110.
    Zhou Y, Chakraborty S, Liu S (2011) Radiolabeled cyclic RGD peptides as radiotracers for imaging tumors and thrombosis by SPECT. Theranostics 1:58–82PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Benavides J, Capdeville C, Dauphin F, Dubois A, Duverger D, Fage D, Gotti B, MacKenzie ET, Scatton B (1990) The quantification of brain lesions with an omega 3 site ligand: a critical analysis of animal models of cerebral ischaemia and neurodegeneration. Brain Res 522(2):275–289PubMedCrossRefGoogle Scholar
  112. 112.
    Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, Gentleman S, Heckemann RA, Gunanayagam K, Gelosa G, Sharp DJ (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70(3):374–383.  https://doi.org/10.1002/ana.22455PubMedCrossRefGoogle Scholar
  113. 113.
    Venneti S, Lopresti BJ, Wang G, Slagel SL, Mason NS, Mathis CA, Fischer ML, Larsen NJ, Mortimer AD, Hastings TG, Smith AD, Zigmond MJ, Suhara T, Higuchi M, Wiley CA (2007) A comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: implications for PET imaging of microglial activation. J Neurochem 102(6):2118–2131.  https://doi.org/10.1111/j.1471-4159.2007.04690.xPubMedCrossRefGoogle Scholar
  114. 114.
    Thakur ML, Gottschalk A, Zaret BL (1979) Imaging experimental myocardial infarction with indium-111-labeled autologous leukocytes: effects of infarct age and residual regional myocardial blood flow. Circulation 60(2):297–305PubMedCrossRefGoogle Scholar
  115. 115.
    Wang PY, Kao CH, Mui MY, Wang SJ (1993) Leukocyte infiltration in acute hemispheric ischemic stroke. Stroke 24(2):236–240PubMedCrossRefGoogle Scholar
  116. 116.
    Stankoff B, Freeman L, Aigrot MS, Chardain A, Dolle F, Williams A, Galanaud D, Armand L, Lehericy S, Lubetzki C, Zalc B, Bottlaender M (2011) Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-(1)(1)C]-2-(4′-methylaminophenyl)-6-hydroxybenzothiazole. Ann Neurol 69(4):673–680.  https://doi.org/10.1002/ana.22320PubMedCrossRefGoogle Scholar
  117. 117.
    de Paula FD, de Vries EF, Sijbesma JW, Dierckx RA, Buchpiguel CA, Copray S (2014) PET imaging of demyelination and remyelination in the cuprizone mouse model for multiple sclerosis: a comparison between [11C]CIC and [11C]MeDAS. NeuroImage 87:395–402.  https://doi.org/10.1016/j.neuroimage.2013.10.057CrossRefGoogle Scholar
  118. 118.
    Faria Dde P, Copray S, Sijbesma JW, Willemsen AT, Buchpiguel CA, Dierckx RA, de Vries EF (2014) PET imaging of focal demyelination and remyelination in a rat model of multiple sclerosis: comparison of [11C]MeDAS, [11C]CIC and [11C]PIB. Eur J Nucl Med Mol Imaging 41(5):995–1003.  https://doi.org/10.1007/s00259-013-2682-6PubMedCrossRefGoogle Scholar
  119. 119.
    Pascual B, Prieto E, Arbizu J, Marti-Climent JM, Penuelas I, Quincoces G, Zarauza R, Pappata S, Masdeu JC (2012) Decreased carbon-11-flumazenil binding in early Alzheimer's disease. Brain 135(Pt 9):2817–2825.  https://doi.org/10.1093/brain/aws210PubMedCrossRefGoogle Scholar
  120. 120.
    Rojas S, Martin A, Pareto D, Herance JR, Abad S, Ruiz A, Flotats N, Gispert JD, Llop J, Gomez-Vallejo V, Planas AM (2011) Positron emission tomography with 11C-flumazenil in the rat shows preservation of binding sites during the acute phase after 2 h-transient focal ischemia. Neuroscience 182:208–216.  https://doi.org/10.1016/j.neuroscience.2011.03.013PubMedCrossRefGoogle Scholar
  121. 121.
    Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84(5):1415–1420PubMedGoogle Scholar
  122. 122.
    Bahmani P, Schellenberger E, Klohs J, Steinbrink J, Cordell R, Zille M, Muller J, Harhausen D, Hofstra L, Reutelingsperger C, Farr TD, Dirnagl U, Wunder A (2011) Visualization of cell death in mice with focal cerebral ischemia using fluorescent annexin A5, propidium iodide, and TUNEL staining. J Cereb Blood Flow Metab 31(5):1311–1320.  https://doi.org/10.1038/jcbfm.2010.233PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Yagle KJ, Eary JF, Tait JF, Grierson JR, Link JM, Lewellen B, Gibson DF, Krohn KA (2005) Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med 46(4):658–666PubMedGoogle Scholar
  124. 124.
    Lampl Y, Lorberboym M, Blankenberg FG, Sadeh M, Gilad R (2006) Annexin V SPECT imaging of phosphatidylserine expression in patients with dementia. Neurology 66(8):1253–1254.  https://doi.org/10.1212/01.wnl.0000208436.75615.8cPubMedCrossRefGoogle Scholar
  125. 125.
    Narula J, Acio ER, Narula N, Samuels LE, Fyfe B, Wood D, Fitzpatrick JM, Raghunath PN, Tomaszewski JE, Kelly C, Steinmetz N, Green A, Tait JF, Leppo J, Blankenberg FG, Jain D, Strauss HW (2001) Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat Med 7(12):1347–1352.  https://doi.org/10.1038/nm1201-1347PubMedCrossRefGoogle Scholar
  126. 126.
    Li S, Johnson J, Peck A, Xie Q (2017) Near infrared fluorescent imaging of brain tumor with IR780 dye incorporated phospholipid nanoparticles. J Transl Med 15(1):18.  https://doi.org/10.1186/s12967-016-1115-2PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Guo B, Sheng Z, Kenry HD, Lin X, Xu S, Liu C, Zheng H, Liu B (2017) Biocompatible conjugated polymer nanoparticles for highly efficient photoacoustic imaging of orthotopic brain tumors in the second near-infrared window. Mater Horizons 4:1151–1156.  https://doi.org/10.1039/c7mh00672aCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Brian M. Kopec
    • 1
  • Kavisha R. Ulapane
    • 1
  • Mario E. G. Moral
    • 1
  • Teruna J. Siahaan
    • 1
    Email author
  1. 1.Department of Pharmaceutical ChemistrySimons Laboratories, The University of KansasLawrenceUSA

Personalised recommendations