Advertisement

Barley pp 195-215 | Cite as

Genome Engineering Using TALENs

  • Goetz Hensel
  • Jochen KumlehnEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1900)

Abstract

Genome engineering involves methods of genetic modification of cells at predefined genomic sites. Here, we used transcription activator-like effector nucleases (TALENs) for the site-directed mutagenesis in barley. Target gene-specific TALEN-encoding expression units were designed and delivered to totipotent cells of either cultivated embryogenic pollen or immature embryos. The analysis of resulting transgenic plants revealed that the described approach allows for the generation of site-specific, heritable mutations at reasonable efficiency.

Key words

Customized endonuclease Nonhomologous end-joining Site-directed mutagenesis Triticeae 

References

  1. 1.
    Vu GTH, Cao HX, Watanabe K, Hensel G, Blattner F, Kumlehn J, Schubert I (2014) Repair of site-specific DNA double-strand breaks in barley occurs via diverse pathways, mostly involving the sister chromatid. Plant Cell 26:2156–2167CrossRefGoogle Scholar
  2. 2.
    Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu Y-Y, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441CrossRefGoogle Scholar
  3. 3.
    Gurushidze M, Hensel G, Hiekel S, Schedel S, Valkov V, Kumlehn J (2014) True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLoS One 9:e92046CrossRefGoogle Scholar
  4. 4.
    Budhagatapalli N, Rutten T, Gurushidze M, Kumlehn J, Hensel G (2015) Targeted modification of gene function exploiting homology-directed repair of TALEN-mediated double strand breaks in barley. G3 (Bethesda) 5:1857–1863CrossRefGoogle Scholar
  5. 5.
    Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector 78 nucleases. Genetics 186:757–761CrossRefGoogle Scholar
  6. 6.
    Boch J, Scholze H, Schornack S, Landgraf A, Hahn S et al (2009) Breaking the code of DNA binding specificity of TAL-Type III effectors. Science 326:1509–1512CrossRefGoogle Scholar
  7. 7.
    Cermak T, Doyle EL, Christian M, Wang L, Zhang Y et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82CrossRefGoogle Scholar
  8. 8.
    Kumlehn J, Serazetdinova L, Hensel G, Becker D, Lörz H (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J 4:251–261CrossRefGoogle Scholar
  9. 9.
    Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2008) Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J Plant Physiol 165:71–82CrossRefGoogle Scholar
  10. 10.
    Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation competent Arabidopsis genomic library in Agrobacterium. Biotechnology (NY) 9:963–967CrossRefGoogle Scholar
  11. 11.
    Miller JC, Tan S, Qiao G, Barlow KA, Wang J et al (2011) A TALE nuclease architecture for efficient genome editing. Nature Biotechnol 29:143–148CrossRefGoogle Scholar
  12. 12.
    Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T et al (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39:9283–9293CrossRefGoogle Scholar
  13. 13.
    Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392CrossRefGoogle Scholar
  14. 14.
    The International Barley Genome Sequencing Consortium (2012) A physical genetic and functional sequence assembly of the barley genome. Nature 491:711–716CrossRefGoogle Scholar
  15. 15.
    Kramer MF, Coen DM (2001) Enzymatic amplification of DNA by PCR: standard procedures and optimization. Curr Protoc Mol Biol 56:15.1.1–15.1.14Google Scholar
  16. 16.
    Palotta M, Graham R, Langridge P, Sparrow D, Barker S (2000) RFLP mapping of manganese efficiency in barley. Theor Appl Genet 101:1100–1108CrossRefGoogle Scholar
  17. 17.
    Vouillot L, Thélie A, Pollet N (2015) Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda) 5:407–415CrossRefGoogle Scholar
  18. 18.
    Budhagatapalli N, Schedel S, Gurushidze M, Pencs S, Hiekel S, Rutten T, Kusch S, Morbitzer R, Lahaye T, Panstruga R, Kumlehn J, Hensel G (2016) A simple test for the cleavage activity of customized endonucleases in plants. Plant Methods 12:18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Plant Reproductive BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandGermany

Personalised recommendations