Immobilization of Intact Phage and Phage-Derived Proteins for Detection and Biocontrol Purposes

  • Hany AnanyEmail author
  • Luba Y. Brovko
  • Denis Arutyunov
  • Nilufar Poshtiban
  • Amit Singh
  • Upasana Singh
  • Michael Brook
  • Christine Szymanski
  • Stephane Evoy
  • Mansel W. Griffiths
Part of the Methods in Molecular Biology book series (MIMB, volume 1898)


The natural specificity of bacteriophages toward their hosts represents great potential for the development of platforms for the capture and detection of bacterial pathogens. Whole phage can carry reporter genes to alter the phenotype of the target pathogen. Phage can also act as staining agents or the progeny of the infection process can be detected. Alternatively, using phage components as probes offer advantages over whole phage particles, including smaller probe size and resilience to desiccation. Phage structures can be engineered for improved affinity, specificity, and binding properties. However, such concepts require the ability to anchor phage and phage-components onto mechanical supports such as beads or flat surfaces. The ability to orient the anchoring is desired in order to optimize binding efficiency. This chapter presents various methods that have been employed for the attachment of phage and phage components onto support structures such as beads, filters, and sensor surfaces.

Key words

Campylobacter jejuni phage NCTC1267 ColorLok paper Immobilization Inkjet printing Paramagnetic silica beads Receptor-binding proteins 



The authors would like to thank Dr. Roger Johnson from Public Health Agency of Canada, National Microbiology Laboratory (Guelph) for providing rV5 phage used in the whole phage immobilization experiments. Also, we would like to thank Drs. Carlos Filipe and Robert Pelton and his research groups from McMaster University for his help in the phage printing experiment.


  1. 1.
    Brovko LY, Anany H, Griffiths MW (2012) Bacteriophages for detection and control of bacterial pathogens in food and food-processing environment. In: Jeyakumar H (ed) Advances in food and nutrition research. Academic Press, Cambridge, pp 241–288Google Scholar
  2. 2.
    Anany H et al (2015) Bacteriophages as antimicrobials in food products: history, biology and application. In: Taylor M (ed) Handbook of natural antimicrobials for food safety and quality. Woodhead Publishing, Cambridge, pp 69–83CrossRefGoogle Scholar
  3. 3.
    Murthy K, Engelhardt R (2012) .Encapsulated bacteriophage formulation, United States PatentsGoogle Scholar
  4. 4.
    Salalha W et al (2006) Encapsulation of bacteria and viruses in electrospun nanofibres. Nanotechnology 17(18):4675CrossRefGoogle Scholar
  5. 5.
    Zhang J et al (2010) Development of an anti-Salmonella phage cocktail with increased host range. Foodborne Pathog Dis 7(11):1415–1419CrossRefGoogle Scholar
  6. 6.
    Ma Y et al (2008) Microencapsulation of bacteriophage felix O1 into chitosan-alginate microspheres for oral delivery. Appl Environ Microbiol 74(15):4799–4805CrossRefGoogle Scholar
  7. 7.
    Stanford K et al (2010) Oral delivery systems for encapsulated bacteriophages targeted at Escherichia coli O157:H7 in feedlot cattle. J Food Prot 73(7):1304–1312CrossRefGoogle Scholar
  8. 8.
    Yongsheng M et al (2012) Enhanced alginate microspheres as means of oral delivery of bacteriophage for reducing Staphylococcus aureus intestinal carriage. Food Hydrocoll 26(2):434–440CrossRefGoogle Scholar
  9. 9.
    Anany H et al (2011) Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes. Appl Environ Microbiol 77(18):6379–6387CrossRefGoogle Scholar
  10. 10.
    Singh A et al (2009) Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens. Biosens Bioelectron 24(12):3645–3651CrossRefGoogle Scholar
  11. 11.
    Gervals L et al (2007) Immobilization of biotinylated bacteriophages on biosensor surfaces. Sensors Actuators B-Chem 125(2):615–621CrossRefGoogle Scholar
  12. 12.
    Arya SK et al (2011) Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. Analyst 136(3):486–492CrossRefGoogle Scholar
  13. 13.
    Balasubramanian S et al (2007) Lytic phage as a specific and selective probe for detection of Staphylococcus aureus—a surface plasmon resonance spectroscopic study. Biosens Bioelectron 22(6):948–955CrossRefGoogle Scholar
  14. 14.
    Grimes CA et al (2011) Theory, instrumentation and applications of Magnetoelastic resonance sensors: a review. Sensors 11(3):2809–2844CrossRefGoogle Scholar
  15. 15.
    Chai Y et al (2012) Rapid and sensitive detection of Salmonella Typhimurium on eggshells by using wireless biosensors. J Food Prot 75(4):631–636CrossRefGoogle Scholar
  16. 16.
    Horikawa S et al (2011) Effects of surface functionalization on the surface phage coverage and the subsequent performance of phage-immobilized magnetoelastic biosensors. Biosens Bioelectron 26(5):2361–2367CrossRefGoogle Scholar
  17. 17.
    Mi-Kyung P et al (2012) The effect of incubation time for Salmonella Typhimurium binding to phage-based magnetoelastic biosensors. Food Control 26(2):539–545CrossRefGoogle Scholar
  18. 18.
    Park M-K, Oh J-H, Chin BA (2011) The effect of incubation temperature on the binding of Salmonella typhimurium to phage-based magnetoelastic biosensors. Sensors Actuators B-Chem 160(1):1427–1433CrossRefGoogle Scholar
  19. 19.
    Singh A et al (2010) Bacteriophage tailspike proteins as molecular probes for sensitive and selective bacterial detection. Biosens Bioelectron 26(1):131–138CrossRefGoogle Scholar
  20. 20.
    Singh A et al (2012) Bacteriophage based probes for pathogen detection. Analyst 137(15):3405–3421CrossRefGoogle Scholar
  21. 21.
    Amit S et al (2011) Specific detection of Campylobacter jejuni using the bacteriophage NCTC 12673 receptor binding protein as a probe. Analyst 136(22):4780–4786CrossRefGoogle Scholar
  22. 22.
    Sun W, Brovko L, Griffiths M (2000) Use of bioluminescent Salmonella for assessing the efficiency of constructed phage-based biosorbent. J Ind Microbiol Biotechnol 25(5):273–275CrossRefGoogle Scholar
  23. 23.
    Tolba M et al (2010) Oriented immobilization of bacteriophages for biosensor applications. Appl Environ Microbiol 76(2):528–535CrossRefGoogle Scholar
  24. 24.
    Minikh O et al (2010) Bacteriophage-based biosorbents coupled with bioluminescent ATP assay for rapid concentration and detection of Escherichia coli. J Microbiol Methods 82(2):177–183CrossRefGoogle Scholar
  25. 25.
    Cademartiri R et al (2010) Immobilization of bacteriophages on modified silica particles. Biomaterials 31(7):1904–1910CrossRefGoogle Scholar
  26. 26.
    Kropinski A et al (2013) The host-range, genomics and proteomics of Escherichia coli O157:H7 bacteriophage rV5. Virol J 10(1):76CrossRefGoogle Scholar
  27. 27.
    Naidoo R et al (2012) Surface-immobilization of chromatographically purified bacteriophages for the optimized capture of bacteria. Bacteriophage 2(1):15–24CrossRefGoogle Scholar
  28. 28.
    Javed MA et al (2013) Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli. PLoS One 8(7)CrossRefGoogle Scholar
  29. 29.
    Kropinski AM et al (2011) Genome and proteome of Campylobacter jejuni bacteriophage NCTC 12673. Appl Environ Microbiol 77(23):8265–8271CrossRefGoogle Scholar
  30. 30.
    Arutyunov D et al (2014) Mycobacteriophage cell binding proteins for the capture of mycobacteria. BacteriophageGoogle Scholar
  31. 31.
    Poshtiban S et al (2013) Phage receptor binding protein-based magnetic enrichment method as an aid for real time PCR detection of foodborne bacteria. Analyst 138(19):5619–5626CrossRefGoogle Scholar
  32. 32.
    Singh U et al (2014) Mycobacteriophage lysin-mediated capture of cells for the PCR detection of Mycobacterium avium subspecies paratuberculosis. Anal Methods 6(15):5682–5689CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hany Anany
    • 1
    • 2
    Email author
  • Luba Y. Brovko
    • 2
  • Denis Arutyunov
    • 3
  • Nilufar Poshtiban
    • 4
  • Amit Singh
    • 4
  • Upasana Singh
    • 4
  • Michael Brook
    • 5
  • Christine Szymanski
    • 3
  • Stephane Evoy
    • 4
  • Mansel W. Griffiths
    • 2
  1. 1.Agriculture and Agri-Food Canada, Guelph Research and Development CenterGuelphCanada
  2. 2.Food Science Department, Canadian Research Institute for Food SafetyUniversity of GuelphGuelphCanada
  3. 3.Department of Biological Sciences, Alberta Glycomics CentreUniversity of AlbertaEdmontonCanada
  4. 4.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada
  5. 5.Department of Chemistry and Chemical BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations