Advertisement

Bacteriophages pp 191-198 | Cite as

Duckweed (Lemna minor) and Alfalfa (Medicago sativa) as Bacterial Infection Model Systems

  • Fatima Kamal
  • Alina Radziwon
  • Carly M. Davis
  • Jonathan J. DennisEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1898)

Abstract

Alternative animal host models of bacterial infection have been developed which reproduce some of the disease conditions observed in higher animals. Analogously, plants are useful for modeling bacterial pathogenesis, in some cases revealing broadly conserved infection mechanisms. Similar to animals, plants have been shown to possess innate immune systems that respond to invading viruses, bacteria, and fungi. Plant infection models often yield results faster, are more convenient, and less expensive than many animal infection models. Here, we describe the use of two different plant-based infection models for the discovery of virulence genes and factors involved in bacterial pathogenesis.

Key words

Bacteria Pathogenesis Infection models Virulence Virulence factors Duckweed Alfalfa 

Notes

Acknowledgments

We gratefully acknowledge the developmental input provided by University of Alberta past students E.M. Dockery, B. Bourrie, and E.L. Thomson.

References

  1. 1.
    Cash HA, Woods DE, McCullough B, Johanson WG, Bass JA (1979) A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am Rev Respir Dis 119:453–459PubMedGoogle Scholar
  2. 2.
    Woods DE, Sokol PA, Bryan LE, Storey DG, Mattingly SJ, Vogel HJ, Ceri H (1991) In vivo regulation of virulence in Pseudomonas aeruginosa associated with genetic rearrangement. J Infect Dis 163:143–149CrossRefGoogle Scholar
  3. 3.
    Chiu CH, Ostry A, Speert DP (2001) Invasion of murine respiratory epithelial cells in vivo by Burkholderia cepacia. J Med Microbiol 50(7):594–601CrossRefGoogle Scholar
  4. 4.
    Singh KV, Qin X, Weinstock GM, Murray BE (1998) Generation and testing of mutants of Enterococcus faecalis in a mouse peritonitis model. J Infect Dis 178:1416–1420CrossRefGoogle Scholar
  5. 5.
    Urban TA, Griffith A, Torok AM, Smolkin ME, Burns JL et al (2004) Contribution of Burkholderia cenocepacia flagella to infectivity and inflammation. Infect Immun 72(9):5126–5113CrossRefGoogle Scholar
  6. 6.
    Seed KD, Dennis JJ (2008) Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infect Immun 76(3):1267–1275CrossRefGoogle Scholar
  7. 7.
    Castonguay-Vanier J, Vial L, Tremblay J, Déziel E (2010) Drosophila melanogaster as a model host for the Burkholderia cepacia complex. PLoS One 5(7):e11467CrossRefGoogle Scholar
  8. 8.
    Tan MW, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A 96(2):715–720CrossRefGoogle Scholar
  9. 9.
    Vergunst AC, Meijer AH, Renshaw SA, O’Callaghan D (2010) Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection. Infect Immun 78(4):1495–1508CrossRefGoogle Scholar
  10. 10.
    Kroupitski Y, Golberg D, Belausov E, Pinto R, Swartzberg D et al (2009) Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Appl Environ Microbiol 75(19):6076–6086CrossRefGoogle Scholar
  11. 11.
    Lee YH, Chen Y, Ouyang X, Gan YH (2010) Identification of tomato plant as a novel host model for Burkholderia pseudomallei. BMC Microbiol 10:28CrossRefGoogle Scholar
  12. 12.
    Prithiviraj B, Weir T, Bais HP, Schweizer HP, Vivanco JM (2005) Plant models for animal pathogenesis. Cell Microbiol 7(3):315–324CrossRefGoogle Scholar
  13. 13.
    Schikora A, Virlogeux-Payant I, Bueso E, Garcia AV, Nilau T et al (2011) Conservation of Salmonella infection mechanisms in plants and animals. PLoS One 6(9):e24112CrossRefGoogle Scholar
  14. 14.
    Ronald PC, Beutler B (2010) Plant and animal sensors of conserved microbial signatures. Science 330(6007):1061–1064CrossRefGoogle Scholar
  15. 15.
    Cao H, Baldini RL, Rahme LG (2001) Common mechanisms for pathogens of plants and animals. Annu Rev Phytopathol 39:259–284CrossRefGoogle Scholar
  16. 16.
    Iriti M, Faoro F (2007) Review of innate and specific immunity in plants and animals. Mycopathologia 164(2):57–64CrossRefGoogle Scholar
  17. 17.
    Stotz HU, Waller F, Wang K (2013) Innate immunity in plants: The role of antimicrobial peptides. In: Hiemstra PS (ed) Antimicrobial peptides and innate immunity. Springer, Basel, pp 29–51CrossRefGoogle Scholar
  18. 18.
    Jander G, Rahme LG, Ausubel FM (2000) Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182(13):3843–3845CrossRefGoogle Scholar
  19. 19.
    Uehlinger S, Schwager S, Bernier SP, Riedel K, Nguyen DT et al (2009) Identification of specific and universal virulence factors in Burkholderia cenocepacia strains by using multiple infection hosts. Infect Immun 77(9):4102–4110CrossRefGoogle Scholar
  20. 20.
    Walker TS, Bais HP, Deziel E, Schweizer HP, Rahme LG et al (2004) Pseudomonas aeruginosa plant root interactions: pathogenicity, biofilm formation, and root exudation. Plant Physiol 134:320–331CrossRefGoogle Scholar
  21. 21.
    Silo-Suh L, Suh S-J, Sokol PA, Ohman DE (2002) A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. Proc Natl Acad Sci U S A 99:15699–15704CrossRefGoogle Scholar
  22. 22.
    Plotnikova JM, Rahme LG, Ausubel FM (2000) Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol 124:1766–1774CrossRefGoogle Scholar
  23. 23.
    Yohalem DS, Lorbeer JW (1997) Distribution of Burkholderia cepacia phenotypes by niche, method of isolation and pathogenicity to onion. Ann Appl Biol 130:467–479CrossRefGoogle Scholar
  24. 24.
    Baldini RL, Lau GW, Rahme LG (2002) Use of plant and insect hosts to model bacterial pathogenesis. Methods Enzymol 358:3–13CrossRefGoogle Scholar
  25. 25.
    Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG et al (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902CrossRefGoogle Scholar
  26. 26.
    Jha AK, Bais HP, Vivanco JM (2005) Enterococcus faecalis mammalian virulence related factors exhibit potent pathogenicity in the Arabidopsis thaliana plant model. Infect Immun 73:464–475CrossRefGoogle Scholar
  27. 27.
    Dong X, Mindrinos M, Davis KR, Ausubel FM (1991) Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell 3:61–72CrossRefGoogle Scholar
  28. 28.
    O’Sullivan LA, Weightman AJ, Jones TH, Marchbank AM, Tiedje JM (2007) Identifying the genetic basis of ecologically and biotechnologically useful functions of the bacterium Burkholderia vietnamienesis. Environ Microbiol 9(4):1017–1034CrossRefGoogle Scholar
  29. 29.
    Bernier SP, Silo-Suh L, Woods DE, Ohman DE, Sokol PA (2003) Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence. Infect Immun 71(9):5306–5313CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Hu Y, Yang B, Ma F, Lu P et al (2010) Duckweed (Lemna minor) as a model plant system for the study of human microbial pathogenesis. PLoS One 5(10):e13527CrossRefGoogle Scholar
  31. 31.
    Thomson EL, Dennis JJ (2013) Common duckweed (Lemna minor) is a versatile high-throughput infection model for the Burkholderia cepacia complex and other pathogenic bacteria. PLoS One 8(11):e80102CrossRefGoogle Scholar
  32. 32.
    Kocharunchitt C, Ross T, McNeil DL (2009) Use of bacteriophages as biocontrol agents to control Salmonella associated with seed sprouts. Int J Food Microbiol 128(3):453–459.  https://doi.org/10.1016/j.ijfoodmicro.2008.10.014CrossRefPubMedGoogle Scholar
  33. 33.
    Soleimani-Delfan A, Etemadifar Z, Emtiazi G, Bouzari M (2015) Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages. Braz J Microbiol 46(3):791–797.  https://doi.org/10.1590/S1517-838246320140498CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Born Y, Fieseler L, Thöny V, Leimer N, Duffy B et al (2017) Engineering of bacteriophages Y2::dpoL1-C and Y2::luxAB for efficient control and rapid detection of the fire blight pathogen, Erwinia amylovora. Appl Environ Microbiol 83(12).  https://doi.org/10.1128/AEM.00341-17. pii: e00341-17
  35. 35.
    Frampton RA, Acedo EL, Young VL, Chen D, Tong B et al (2015) Genome, proteome and structure of a T7-like bacteriophage of the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae. Viruses 7(7):3361–3379.  https://doi.org/10.3390/v7072776CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yu JG, Lim JA, Song YR, Heu S, Kim GH et al (2016) Isolation and characterization of bacteriophages against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. J Microbiol Biotechnol 26(2):385–393.  https://doi.org/10.4014/jmb.1509.09012CrossRefPubMedGoogle Scholar
  37. 37.
    Bhunchoth A, Phironrit N, Leksomboon C, Chatchawankanphanich O, Kotera S et al (2015) Isolation of Ralstonia solanacearum-infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents. J Appl Microbiol 118(4):1023–1033.  https://doi.org/10.1111/jam.12763CrossRefPubMedGoogle Scholar
  38. 38.
    Wei C, Liu J, Maina AN, Mwaura FB, Yu J et al (2017) Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt. Virol Sin 32(6):476–484.  https://doi.org/10.1007/s12250-017-3987-6CrossRefPubMedGoogle Scholar
  39. 39.
    Ye J, Kostrzynska M, Dunfield K, Warriner K (2010) Control of Salmonella on sprouting mung bean and alfalfa seeds by using a biocontrol preparation based on antagonistic bacteria and lytic bacteriophages. J Food Prot 73(1):9–17CrossRefGoogle Scholar
  40. 40.
    Das M, Bhowmick TS, Ahern SJ, Young R, Gonzalez CF (2015) Control of Pierce’s disease by phage. PLoS One 10(6):e0128902.  https://doi.org/10.1371/journal.pone.0128902CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Randhawa MA (2009) Calculation of LD50 values from the method of Miller and Tainter, 1944. J Ayub Med Coll Abbottabad 21(3):184–185PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fatima Kamal
    • 1
  • Alina Radziwon
    • 1
  • Carly M. Davis
    • 1
  • Jonathan J. Dennis
    • 1
    Email author
  1. 1.Faculty of Science, Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations