Bacteriophages pp 163-171 | Cite as

Use of Greater Wax Moth Larvae (Galleria mellonella) as an Alternative Animal Infection Model for Analysis of Bacterial Pathogenesis

  • Fatima Kamal
  • Danielle L. Peters
  • Jaclyn G. McCutcheon
  • Gary B. Dunphy
  • Jonathan J. DennisEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1898)


Alternative infection models of bacterial pathogenesis are useful because they reproduce some of the disease characteristics observed in higher animals. Insect models are especially useful for modeling bacterial infections, as they are inexpensive, generally less labor-intensive, and more ethically acceptable than experimentation on higher organisms. Similar to animals, insects have been shown to possess innate immune systems that respond to pathogenic bacteria.

Key words

Galleria mellonella Insects Infection model Wax worm Pathogenesis Larvae 



We gratefully acknowledge the developmental input provided by University of Alberta past student Erin M. Dockery.


  1. 1.
    Hendrickson EL, Plotnikova J, Mahajan-Miklos S, Rahme LG, Ausubel FM (2001) Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice. J Bacteriol 183:7126–7134CrossRefGoogle Scholar
  2. 2.
    Jander G, Rahme LG, Ausubel FM (2000) Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182:3843–3845CrossRefGoogle Scholar
  3. 3.
    Miyata S, Casey M, Frank DW, Ausubel FM, Drenkard E (2003) Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect Immun 71:2404–2413CrossRefGoogle Scholar
  4. 4.
    Seed KD, Dennis JJ (2008) Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infect Immun 76(3):1267–1275CrossRefGoogle Scholar
  5. 5.
    Seed KD, Dennis JJ (2009) Experimental bacteriophage therapy increases survival of Galleria mellonella larvae infected with clinically relevant strains of the Burkholderia cepacia complex. Antimicrob Agents Chemother 53(5):2205–2208. PubMed PMID: 19223640CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lithgow KV, Scott NE, Iwashkiw JA, Thomson EL, Foster LJ et al (2014) A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol Microbiol 92(1):116–137CrossRefGoogle Scholar
  7. 7.
    Fedhila S, Daou N, Lereclus D, Nielsen-LeRoux C (2006) Identification of Bacillus cereus internalin and other candidate virulence genes specifically induced during oral infection in insects. Mol Microbiol 62:339–355CrossRefGoogle Scholar
  8. 8.
    Aperis G, Burgwyn Fuchs B, Anderson CA, Warner JE, Calderwood SB et al (2007) Galleria mellonella as a model host to study infection by the Francisella tularensis live vaccine strain. Microbes Infect 9:729–734CrossRefGoogle Scholar
  9. 9.
    Sousa PS, Silva IN, Moreira LM, Veríssimo A, Costa J (2018) Differences in virulence between legionella pneumophila isolates from human and non-human sources determined in galleria mellonella infection model. Front Cell Infect Microbiol 8:97CrossRefGoogle Scholar
  10. 10.
    Rakic Martinez M, Wiedmann M, Ferguson M, Datta AR (2017) Assessment of Listeria monocytogenes virulence in the Galleria mellonella insect larvae model. PLoS One 12(9):e0184557CrossRefGoogle Scholar
  11. 11.
    Entwistle FM, Coote PJ (2018) Evaluation of greater wax moth larvae, Galleria mellonella, as a novel in vivo model for non-tuberculosis Mycobacteria infections and antibiotic treatments. J Med Microbiol 67(4):585–597CrossRefGoogle Scholar
  12. 12.
    Meir M, Grosfeld T, Barkan D (2018) Establishment and validation of Galleria mellonella as a novel model organism to study Mycobacterium abscessus infection, pathogenesis, and treatment. Antimicrob Agents Chemother 62(4):e02539-17CrossRefGoogle Scholar
  13. 13.
    Morton DB, Dunphy GB, Chadwick JS (1987) Reactions of hemocytes of immune and non-immune Galleria mellonella larvae to Proteus mirabilis. Dev Comp Immunol 11:47–55CrossRefGoogle Scholar
  14. 14.
    Wang-Kan X, Blair JMA, Chirullo B, Betts J, La Ragione RM, Ivens A, Ricci V, Opperman TJ, Piddock LJV (2017) Lack of AcrB efflux function confers loss of virulence on Salmonella enterica serovar typhimurium. MBio 8(4):e00968-17CrossRefGoogle Scholar
  15. 15.
    Mannala GK, Koettnitz J, Mohamed W, Sommer U, Lips KS, Spröer C, Bunk B, Overmann J, Hain T, Heiss C, Domann E, Alt V (2018) Whole-genome comparison of high and low virulent Staphylococcus aureus isolates inducing implant-associated bone infections. Int J Med Microbiol S1438-4221(17):30603–30603Google Scholar
  16. 16.
    Pérez-Reytor D, García K (2018) Galleria mellonella: a model of infection to discern novel mechanisms of pathogenesis of non-toxigenic Vibrio parahaemolyticus strains. Virulence 9(1):22–24CrossRefGoogle Scholar
  17. 17.
    Mylonakis E, Moreno R, El Khoury JB, Idnurm A, Heitman J et al (2005) Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun 73:3842–3850CrossRefGoogle Scholar
  18. 18.
    Reeves EP, Messina CG, Doyle S, Kavanagh K (2004) Correlation between gliotoxin production and virulence of Aspergillus fumigatus in Galleria mellonella. Mycopathologia 158:73–79CrossRefGoogle Scholar
  19. 19.
    St. Leger RJ, Screen SE, Shams-Pirzadeh B (2000) Lack of host specialization in Aspergillus flavus. Appl Environ Microbiol 66:320–324CrossRefGoogle Scholar
  20. 20.
    Cotter G, Doyle S, Kavanagh K (2000) Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol 27:163–169CrossRefGoogle Scholar
  21. 21.
    Borman AM (2018) Of mice and men and larvae: Galleria mellonella to model the early host-pathogen interactions after fungal infection. Virulence 9(1):9–12CrossRefGoogle Scholar
  22. 22.
    Wuensch A, Trusch F, Iberahim NA, van West P (2018) Galleria melonella as an experimental in vivo host model for the fish-pathogenic oomycete Saprolegnia parasitica. Fungal Biol 122(2-3):182–189CrossRefGoogle Scholar
  23. 23.
    Champion OL, Cooper IA, James SL, Ford D, Karlyshev A, Wren BW, Duffield M, Oyston PC, Titball RW (2009) Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis. Microbiology 155(Pt 5):1516–1522. Scholar
  24. 24.
    Hoffmann JA (1995) Innate immunity of insects. Curr Opin Immunol 7:4–10CrossRefGoogle Scholar
  25. 25.
    Gourbal B, Pinaud S, Beckers GJM, Van Der Meer JWM, Conrath U, Netea MG (2018) Innate immune memory: An evolutionary perspective. Immunol Rev 283(1):21–40. Scholar
  26. 26.
    Cooper D, Eleftherianos I (2017) Memory and specificity in the insect immune system: current perspectives and future challenges. Front Immunol 8:539. Scholar
  27. 27.
    Vilmos P, Kurucz E (1998) Insect immunity: Evolutionary roots of the mammalian innate immune system. Immunol Lett 62:59–66CrossRefGoogle Scholar
  28. 28.
    Yu XQ, Zhu YF, Ma C, Fabrick JA, Kanost MR (2002) Pattern recognition proteins in Manduca sexta plasma. Insect Biochem Mol Biol 32(10):1287–1293CrossRefGoogle Scholar
  29. 29.
    Ishii K, Hamamoto H, Kamimura M, Nakamura Y, Noda H, Imamura K, Mita K, Sekimizu K (2010) Insect cytokine paralytic peptide (PP) induces cellular and humoral immune responses in the silkworm Bombyx mori. J Biol Chem 285(37):28635–28642. Scholar
  30. 30.
    Paro S, Imler J-L (2016) Immunity in insects. In: Ratcliffe MJH (ed) Encyclopedia of immunobiology, vol 1. Academic Press, San Diego, pp 454–461CrossRefGoogle Scholar
  31. 31.
    Kavanagh K, Reeves EP (2004) Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol Rev 28:101–112CrossRefGoogle Scholar
  32. 32.
    Brennan M, Thomas DY, Whiteway M, Kavanagh K (2002) Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol Med Microbiol 34:153–157CrossRefGoogle Scholar
  33. 33.
    Kocharunchitt C, Ross T, McNeil DL (2009) Use of bacteriophages as biocontrol agents to control Salmonella associated with seed sprouts. Int J Food Microbiol 128(3):453–459. PubMed PMID:18996610CrossRefPubMedGoogle Scholar
  34. 34.
    Kamal F, Dennis JJ (2015) Burkholderia cepacia complex Phage-Antibiotic Synergy (PAS): antibiotics stimulate lytic phage activity. Appl Environ Microbiol 81(3):1132–1138. PMID: 25452284CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lynch KH, Abdu AH, Schobert M, Dennis JJ (2013) Genomic characterization of JG068, a novel virulent podovirus active against Burkholderia cenocepacia. BMC Genomics 14:574. PMID: 23978260CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lynch KH, Seed KD, Stothard P, Dennis JJ (2010) Inactivation of Burkholderia cepacia complex phage KS9 gp41 identifies the phage repressor and generates lytic virions. J Virol 84(3):1276–1288. PMID: 19939932CrossRefPubMedGoogle Scholar
  37. 37.
    Nale JY, Chutia M, Carr P, Hickenbotham PT, Clokie MR (2016) 'Get in early'; Biofilm and wax moth (Galleria mellonella) models reveal new insights into the therapeutic potential of Clostridium difficile bacteriophages. Front Microbiol 7:1383. PubMed PMID: 27630633CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Abbasifar R, Kropinski AM, Sabour PM, Chambers JR, MacKinnon J et al (2014) Efficiency of bacteriophage therapy against Cronobacter sakazakii in Galleria mellonella (greater wax moth) larvae. Arch Virol 159(9):2253–2261. PubMed PMID: 24705602CrossRefPubMedGoogle Scholar
  39. 39.
    D'Andrea MM, Marmo P, Henrici De Angelis L, Palmieri M et al (2017) φBO1E, a newly discovered lytic bacteriophage targeting carbapenemase-producing Klebsiella pneumoniae of the pandemic Clonal Group 258 clade II lineage. Sci Rep 7(1):2614. PMID: 28572684CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Beeton ML, Alves DR, Enright MC, Jenkins AT (2015) Assessing phage therapy against Pseudomonas aeruginosa using a Galleria mellonella infection model. Int J Antimicrob Agents 46(2):196–200. PubMed PMID: 26100212CrossRefPubMedGoogle Scholar
  41. 41.
    Latz S, Krüttgen A, Häfner H, Buhl EM, Ritter K et al (2017) Differential effect of newly isolated phages belonging to PB1-like, phiKZ-like and LUZ24-like viruses against multi-drug resistant Pseudomonas aeruginosa under varying growth conditions. Viruses 9(11):E315. PMID: 29077053CrossRefPubMedGoogle Scholar
  42. 42.
    Forti F, Roach DR, Cafora M, Pasini ME, Horner DS et al (2018) Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob Agents Chemother:AAC.02573–AAC.02517. PMID: 29555626
  43. 43.
    Muszyńska-Pytel M, Mikołajczyk P, Pszczółkowski MA, Cymborowski B (1992) Juvenilizing effect of ecdysone mimic RH 5849 in Galleria mellonella larvae. Experientia 48(10):1013–1017CrossRefGoogle Scholar
  44. 44.
    Kwadha CA, Ong'amo GO, Ndegwa PN, Raina SK, Fombong AT (2017) The biology and control of the greater wax moth, Galleria mellonella. Insects 8(2):E61. Scholar
  45. 45.
    Dutsky SR, Thompson JV, Cantwell GE (1962) A technique for mass rearing of the greater wax moth (Lepidoptera : Galleridae). Proceed Entomol Soc Washington 64:56–58Google Scholar
  46. 46.
    Mohamed MA, Coppel HC (1983) Mass rearing of the greater wax moth, Galleria mellonella (Lepidoptera : Pyralidae), for small-scale laboratory studies. Great Lakes Entomol 16(4):139–141Google Scholar
  47. 47.
    Rahman A, Bharali P, Borah L, Bathari M, Taye RR (2017) Post embryonic development of Galleria mellonella L. and its management strategy. J Entomol Zoo Stud 5(3):1523–1526Google Scholar
  48. 48.
    Meylaers K, Freitak D, Schoofs L (2007) Immunocompetence of Galleria mellonella: sex- and stage-specific differences and the physiological cost of mounting an immune response during metamorphosis. J Insect Physiol 53(2):146–156CrossRefGoogle Scholar
  49. 49.
    Marek M (1979) Influence of cooling and glycerol on metabolism of proteins and esterase isoenzymes in hemolymph of pupae Galleria mellonella (L.). Comp Biochem Physiol A 63(4):489–492CrossRefGoogle Scholar
  50. 50.
    Browne N, Heelan M, Kavanagh K (2013) An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 4(7):597–603CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fatima Kamal
    • 1
  • Danielle L. Peters
    • 1
  • Jaclyn G. McCutcheon
    • 1
  • Gary B. Dunphy
    • 2
  • Jonathan J. Dennis
    • 1
    Email author
  1. 1.Faculty of Science, Biological SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Natural Resource Sciences, Faculty of Agricultural and Environmental SciencesMcGill UniversityMontrealCanada

Personalised recommendations