Advertisement

An Innovative Standard Operation Procedure for Isolating GMP-Grade CD4+CD25+ T Cells from Non-Mobilized Leukapheresis

  • Wei ZhangEmail author
  • Suzanne M. Watt
  • David J. Roberts
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1899)

Abstract

This SOP describes a closed system for isolating GMP-grade CD4+CD25+ T cells from non-mobilized leukapheresis collections (nMLCs), independent of a clean room in a certified GMP premises, by using CliniMACS format GMP grade reagents (CD25-labeled magnetic beads with/without pre-depletion of CD8+ T cells and CD19+ B cells), a GMP grade-A laminar hood and CliniMACS cell processing system.

Key words

GMP CD25 Leukapheresis collection CliniMACS Magnetic beads 

Notes

Acknowledgments

We would like to acknowledge the support of NHS Blood and Transplant, the National Institute for Health Biomedical Research Centre Program and the NHSBT and Department of Haematology Trust Funds. This report presents independent research commissioned by the National Institutes for Health Research (NIHR) under its Programme Grants for Applied Research Programme (Grant Reference Number RP-PG-0310-1003) (WZ, DJR, SMW). The views expressed in this publication are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health.

The authors wish to thank all donors who participated in this study and the Therapeutic Apheresis Services Unit NHSBT Oxford for providing the leukapheresis collections.

References

  1. 1.
  2. 2.
  3. 3.
    Burgstaler EA (2006) Blood component collection by apheresis. J Clin Apher 21:142–151CrossRefGoogle Scholar
  4. 4.
    Hester J (2000) Peripheral blood stem cell collection: the interaction of technology, procedure, and biological factors. Transfus Sci 23:125–132CrossRefGoogle Scholar
  5. 5.
    Zhang W, Frith E, Belfield H, Smythe J, Clarke S, Watt SM, Danby R, Benjamin S, Peniket A, Roberts DJ (2015) An innovative method to generate a GMP-grade regulatory T cell product from non-mobilised leukapheresis donors independent of a clean room facility. CytotheropyGoogle Scholar
  6. 6.
    Hester J, Bojko P, Rondon G, Champlin R (1996) Integration of biological, procedural, apheresis principles of peripheral blood stem cell transplantation programs. Transfus Sci 17:585–590CrossRefGoogle Scholar
  7. 7.
    Steininger PA, Smith R, Geier C, Zimmermann R, Eckstein R, Strasser EF (2013) Leukapheresis in non-cytokine-stimulated donors with a new apheresis system: first-time collection results and evaluation of subsequent cryopreservation. Transfusion 53:747–756CrossRefGoogle Scholar
  8. 8.
    Welniak LA, Blazar BR, Murphy WJ (2007) Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu Rev Immunol 25:139–170CrossRefGoogle Scholar
  9. 9.
    Gyurkocza B, Rezvani A, Storb RF (2010) Allogeneic hematopoietic cell transplantation: the state of the art. Expert Rev Hematol 3(3):285–299CrossRefGoogle Scholar
  10. 10.
    Ringden O, Karlsson H, Olsson R, Omazic B, Uhlin M (2009) The allogeneic graft-versus-cancer effect. Br J Haematol 147(5):614–633CrossRefGoogle Scholar
  11. 11.
    M E, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S, Negrin RS (2003) CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 9(9):1144–1150CrossRefGoogle Scholar
  12. 12.
    Trzonkowski P, Bieniaszewska M, Juścińska J, Dobyszuk A, Krzystyniak A, Marek N, Myśliwska J, Hellmann A (2009) First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127- T regulatory cells. Clin Immunol 133(1):22–26CrossRefGoogle Scholar
  13. 13.
    Di Ianni M, Falzetti F, Carotti A, Terenzi A, Del Papa B, Perruccio K, Ruggeri L, Sportoletti P, Rosati E, Marconi P, Falini B, Reisner Y, Velardi A, Aversa F, Martelli MF (2011) Immunoselection and clinical use of T regulatory cells in HLA-haploidentical stem cell transplantation. Best Pract Res Clin Haematol 24(3):459–466CrossRefGoogle Scholar
  14. 14.
    Edinger M, Hoffmann P (2011) Regulatory T cells in stem cell transplantation: strategies and first clinical experiences. Curr Opin Immunol 23(5):679–684CrossRefGoogle Scholar
  15. 15.
    Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J, Defor T, Levine BL, June CH, Rubinstein P, McGlave PB, Blazar BR, Wagner JE (2011) Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 117(3):1061–1070CrossRefGoogle Scholar
  16. 16.
    A G, Landau DA, Martin GH, Bonduelle O, Grinberg-Bleyer Y, Matheoud D, Grégoire S, Baillou C, Combadière B, Piaggio E, Cohen JL (2011) Immune reconstitution is preserved in hematopoietic stem cell transplantation coadministered with regulatory T cells for GVHD prevention. Blood 117(10):2975–2983CrossRefGoogle Scholar
  17. 17.
    Martelli MF, Di Ianni M, Ruggeri L, Falzetti F, Carotti A, Terenzi A, Pierini A, Massei MS, Amico L, Urbani E, Del Papa B, Zei T, Iacucci Ostini R, Cecchini D, Tognellini R, Reisner Y, Aversa F, Falini B, Velardi A (2014) HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood 124(4):638–644CrossRefGoogle Scholar
  18. 18.
    Danby RD, Zhang W, Medd P, Littlewood TJ, Peniket A, Rocha V, Roberts DJ (2016) High proportions of regulatory T cells in PBSC grafts predict improved survival after allogeneic haematopoietic SCT. Bone Marrow Transplantation 51:110–118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Wei Zhang
    • 1
    Email author
  • Suzanne M. Watt
    • 2
  • David J. Roberts
    • 2
  1. 1.Nuffield Department of Women’s Reproductive HealthUniversity of OxfordOxfordUK
  2. 2.Nuffield Division of Laboratory SciencesUniversity of OxfordOxfordUK

Personalised recommendations