Advertisement

IMR90 ER:RAS: A Cell Model of Oncogene-Induced Senescence

  • Andrew J. Innes
  • Jesús Gil
Part of the Methods in Molecular Biology book series (MIMB, volume 1896)

Abstract

Oncogene-induced senescence (OIS) is a cellular response that limits the replication of cells expressing oncogenes. As a result, OIS is a potent tumor suppressor mechanism limiting cancer progression. Here we describe IMR90 ER:RAS, a widely used model to study OIS in cell culture. This model takes advantage of IMR90 human primary fibroblast infected with a 4-hydroxy-tamoxifen (4-OHT) inducible ER:RAS construct. RAS activation upon 4-OHT treatment results in a coordinated induction of senescence, recapitulating different aspects of the phenotype such as the growth arrest and the establishment of a senescence-associated secretory phenotype (SASP).

Key words

Senescence Oncogene-induced senescence SASP p53 p21CIP1 p16INK4a Growth arrest BrdU 

Notes

Acknowledgments

This work was supported by core funding from the Medical Research Council, London Institute of Medical Sciences. A.J.I. is supported by a National Institute for Health Research (NIHR) Clinical Lectureship, and acknowledges support from the NIHR and Imperial Biomedical Research Centre (BRC).

References

  1. 1.
    Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Salama R, Sadaie M, Hoare M, Narita M (2014) Cellular senescence and its effector programs. Genes Dev 28:99–114CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kuilman T, Peeper DS (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9:81–94CrossRefPubMedGoogle Scholar
  4. 4.
    Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L et al (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM et al (2013) Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 152:340–351CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Munoz-Espin D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15:482–496CrossRefPubMedGoogle Scholar
  9. 9.
    Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al (2005) Tumour biology: senescence in premalignant tumours. Nature 436:642CrossRefPubMedGoogle Scholar
  10. 10.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70CrossRefGoogle Scholar
  11. 11.
    Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724CrossRefPubMedGoogle Scholar
  12. 12.
    Di Micco R, Fumagalli M, d’Adda di Fagagna F (2007) Breaking news: high-speed race ends in arrest—how oncogenes induce senescence. Trends Cell Biol 17:529–536CrossRefPubMedGoogle Scholar
  13. 13.
    Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:547–551CrossRefPubMedGoogle Scholar
  14. 14.
    Zhu J, Woods D, McMahon M, Bishop JM (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12:2997–3007CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12:3008–3019CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ et al (2015) mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 17:1205–1217CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15:978–990CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Barradas M, Anderton E, Acosta JC, Li S, Banito A, Rodriguez-Niedenfuhr M et al (2009) Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev 23:1177–1182CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tordella L, Khan S, Hohmeyer A, Banito A, Klotz S, Raguz S et al (2016) SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. Genes Dev 30:2187–2198CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dajee M, Tarutani M, Deng H, Cai T, Khavari PA (2002) Epidermal Ras blockade demonstrates spatially localized Ras promotion of proliferation and inhibition of differentiation. Oncogene 21:1527–1538CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MRC London Institute of Medical Sciences (LMS)LondonUK
  2. 2.Faculty of Medicine, Institute of Clinical Sciences (ICS)Imperial College LondonLondonUK
  3. 3.Faculty of Medicine, Centre for HaematologyImperial College LondonLondonUK

Personalised recommendations