Assessing Functional Roles of the Senescence-Associated Secretory Phenotype (SASP)

  • Nicolas Malaquin
  • Véronique Tu
  • Francis Rodier
Part of the Methods in Molecular Biology book series (MIMB, volume 1896)


Cellular senescence is linked to many normal biological processes, including tumor suppression, development, and wound healing, but it is also associated with age-related pathologies such as cancer progression. Numerous functions of senescent cells depend on their ability to secrete bioactive molecules, a characteristic termed the senescence-associated secretory phenotype (SASP). Although the SASP is generally described as proinflammatory, its true microenvironmental impact and composition may vary according to cell types (i.e., fibroblasts/epithelial, normal/cancerous) and senescence-triggering stimuli (i.e., replicative senescence, DNA damage-induced senescence, oncogene-induced senescence). The SASP reinforces autocrine cell-autonomous functions such as the senescence-associated proliferation arrest, but also mediates potent paracrine, non-cell-autonomous effects. In a paracrine manner, senescent cells influence the remodeling of surrounding tissues and the biology of adjacent cells, including modulation of proliferation and migration/invasion, reinforcement/induction of peripheral senescence, and immune cell activity or recruitment. Overall, the complexity of the context-dependent SASP composition and varied microenvironmental impact demonstrate the importance of properly assessing SASP functions directly on target cells. In this chapter, we focus on experimental approaches to evaluate the impact of SASP on the proliferation and migration/invasion capacities of target cancer cells. These techniques, with combined supplemental notes, will facilitate the assessment of novel functions of senescent cells on their microenvironment, and can be easily adapted beyond the use of the presented SASP-cancer scenario.

Key words

Migration/invasion assay Proliferation assay Senescence Secretory phenotype Secretome Cell transformation Microenvironment 



We thank all laboratory members for valuable comments and discussions, and Jacqueline Chung for manuscript editing. FR is supported by the Institut du cancer de Montréal and by grants from the Canadian Institute for Health Research (MOP114962), the Terry Fox Research Institute (1030) and by a Fonds de recherche du Québec - Santé (FRQS) junior I-II career awards (22624). NM is supported by a MITACS fellowship. VT has received scholarships from Université de Montréal’s Faculté de médecine and Molecular Biology programs.


  1. 1.
    Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432:307–315CrossRefGoogle Scholar
  2. 2.
    Rodier F et al (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11:973–979CrossRefGoogle Scholar
  3. 3.
    van Deursen JM (2014) The role of senescent cells in ageing. Nature 509:439–446CrossRefGoogle Scholar
  4. 4.
    Baker DJ et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189CrossRefGoogle Scholar
  5. 5.
    Demaria M et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733CrossRefGoogle Scholar
  6. 6.
    Munoz-Espin D et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118CrossRefGoogle Scholar
  7. 7.
    Gonzalez LC, Ghadaouia S, Martinez A, Rodier F (2015) Premature aging/senescence in cancer cells facing therapy: good or bad? BiogerontologyGoogle Scholar
  8. 8.
    Chang BD et al (1999) A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59:3761–3767PubMedGoogle Scholar
  9. 9.
    Coppe JP et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868CrossRefGoogle Scholar
  10. 10.
    Acosta JC et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018CrossRefGoogle Scholar
  11. 11.
    Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246CrossRefGoogle Scholar
  12. 12.
    Malaquin N, Martinez A, Rodier F (2016) Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Exp Gerontol 82:39–49CrossRefGoogle Scholar
  13. 13.
    Coppe JP et al (2010) A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One 5:e9188CrossRefGoogle Scholar
  14. 14.
    Coppe JP et al (2011) Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem 286:36396–36403CrossRefGoogle Scholar
  15. 15.
    Malaquin N, Carrier-Leclerc A, Dessureault M, Rodier F (2015) DDR-mediated crosstalk between DNA-damaged cells and their microenvironment. Front Genet 6(94)Google Scholar
  16. 16.
    Parrinello S, Coppe JP, Krtolica A, Campisi J (2005) Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118:485–496CrossRefGoogle Scholar
  17. 17.
    Malaquin N et al (2013) Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis. PLoS One 8:e63607CrossRefGoogle Scholar
  18. 18.
    Krizhanovsky V et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667CrossRefGoogle Scholar
  19. 19.
    Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98:12072–12077CrossRefGoogle Scholar
  20. 20.
    Kang TW et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:547–551CrossRefGoogle Scholar
  21. 21.
    Sun Y et al (2012) Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 18:1359–1368CrossRefGoogle Scholar
  22. 22.
    Rodier F (2013) Detection of the senescence-associated secretory phenotype (SASP). Methods Mol Biol 965:165–173CrossRefGoogle Scholar
  23. 23.
    Rodier F et al (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 124:68–81CrossRefGoogle Scholar
  24. 24.
    O'Hagan-Wong K et al (2016) Increased IL-6 secretion by aged human mesenchymal stromal cells disrupts hematopoietic stem and progenitor cells' homeostasis. Oncotarget 7:13285–13296PubMedPubMedCentralGoogle Scholar
  25. 25.
    Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479CrossRefGoogle Scholar
  26. 26.
    Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556CrossRefGoogle Scholar
  27. 27.
    Laberge RM et al (2013) Mitochondrial DNA damage induces apoptosis in senescent cells. Cell Death Dis 4:e727CrossRefGoogle Scholar
  28. 28.
    Goldstein JC, Rodier F, Garbe JC, Stampfer MR, Campisi J (2005) Caspase-independent cytochrome c release is a sensitive measure of low-level apoptosis in cell culture models. Aging Cell 4:217–222CrossRefGoogle Scholar
  29. 29.
    Dimri GP et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367CrossRefGoogle Scholar
  30. 30.
    Beausejour CM et al (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222CrossRefGoogle Scholar
  31. 31.
    Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14:501–513CrossRefGoogle Scholar
  32. 32.
    Narita M et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716CrossRefGoogle Scholar
  33. 33.
    Moiseeva O, Bourdeau V, Roux A, Deschenes-Simard X, Ferbeyre G (2009) Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol 29:4495–4507CrossRefGoogle Scholar
  34. 34.
    Blagosklonny MV (2011) Cell cycle arrest is not senescence. Aging (Albany NY) 3:94–101CrossRefGoogle Scholar
  35. 35.
    Kanda T, Sullivan KF, Wahl GM (1998) Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8:377–385CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nicolas Malaquin
    • 1
  • Véronique Tu
    • 1
  • Francis Rodier
    • 1
    • 2
  1. 1.Centre de Recherche du CHUM (CRCHUM) and Institut du Cancer de MontréalMontrealCanada
  2. 2.Département de Radiologie, Radio-Oncologie et Médecine NucléaireUniversité de MontréalMontrealCanada

Personalised recommendations