Advertisement

Reactive Oxygen Species Detection in Senescent Cells

  • Stella Victorelli
  • João F. Passos
Part of the Methods in Molecular Biology book series (MIMB, volume 1896)

Abstract

Cumulative evidence suggests that cellular senescence plays a variety of important physiological roles, including tumor suppression, embryonic development and ageing. Senescent cells are characterized by increased production of reactive oxygen species (ROS), mostly produced by dysfunctional mitochondria. Both intracellular and extracellular ROS have been shown to contribute to the induction of senescence. ROS have also been shown to act as signaling molecules during senescence, stabilizing the cell-cycle arrest. In this chapter, we present a detailed description of protocols that allow us to characterize intracellular and extracellular ROS in live senescent cells.

Key words

ROS Senescence ROS indicator dyes MitoSOX™ DHE DHR123 Amplex Red 

References

  1. 1.
    Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621CrossRefPubMedGoogle Scholar
  2. 2.
    Correia-Melo C, Hewitt G, Passos JF (2014) Telomeres, oxidative stress and inflammatory factors: partners in cellular senescence? Longev Healthspan 3:1CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Coppé JP, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:e301CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Jurk D, Wilson C, Passos JF et al (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 2:4172CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kang T-W, Yevsa T, Woller N et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:547–551CrossRefPubMedGoogle Scholar
  6. 6.
    Krizhanovsky V, Yon M, Dickins RA et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Demaria M, Ohtani N, Sameh a Y et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Muñoz-Espín D, Cañamero M, Maraver A et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118CrossRefPubMedGoogle Scholar
  9. 9.
    Serrano M, Lin AW, Mccurrach ME et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602CrossRefGoogle Scholar
  10. 10.
    Baker DJ, Childs BG, Durik M et al (2016) Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530:184–189CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Childs B, Baker DJ, Wijshake T et al (2016) Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354:472CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Farr JN, Xu M, Weivoda MM et al (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23:1072CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ogrodnik M, Miwa S, Tchkonia T et al (2017) Cellular senescence drives age-dependent hepatic steatosis. Nat Commun 8:15691CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schafer MJ, White TA, Iijima K et al (2017) Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8:14532CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Xu M, Palmer AK, Ding H et al (2015) Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife 4:e12997CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Correia-Melo C, Marques FDM, Anderson R et al (2016) Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J 35:724–742CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Passos JF, Saretzki G, Ahmed S et al (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5:e110CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nelson G, Wordsworth J, Wang C et al (2012) A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11:345–349CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lee AC, Fenster BE, Ito H et al (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 274:7936–7940CrossRefPubMedGoogle Scholar
  20. 20.
    Macip S, Igarashi M, Berggren P et al (2003) Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol Cell Biol 23:8576–8585CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Macip S, Igarashi M, Fang L et al (2002) Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 21:2180–2188CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Passos JF, Nelson G, Wang C et al (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Birch J, Passos JF (2017) Targeting the SASP to combat ageing: mitochondria as possible intracellular allies? BioEssays 39Google Scholar
  24. 24.
    Kalyanaraman B, Darley-Usmar V, Davies KJA et al (2011) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52:1–6CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Newcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
  2. 2.Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
  3. 3.Ageing Research Laboratories, Campus for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations