Methods to Quantify the NF-κB Pathway During Senescence

Part of the Methods in Molecular Biology book series (MIMB, volume 1896)


Nuclear factor κB (NF-κB) is a family of transcription factors important for regulating innate and adaptive immunity, cellular proliferation, apoptosis and senescence. The NF-κB family is comprised of five subunits, RelA/p65, RelB, C-Rel, p50 (p105/NF-κB1), and p52 (p100/NF-κB2). NF-κB activity goes up with age in multiple tissues. The two subunits RelA/p65 and p50 have been implicated in senescence and aging with genetic deletion of p65 and p50 reducing or increasing senescence respectively. Pharmacologic inhibition of NF-κB also extends health span and reduces senescence in mouse models of accelerated aging. In addition, NF-κB regulates expression of many of senescence associated secretory phenotype (SASP) factors released by certain types of senescent cells that drives loss of tissue homeostasis and secondary senescence. To measure NF-κB activity with aging in vivo, multiple methods can and need to be utilized including cellular localization of p65, EMSA analysis of NF-κB DNA binding, RNA in situ hybridization, and analysis of expression of NF-κB target genes. To colocalize NF-κB activation and senescence, p65 localization or transcriptional activity can be measured by immunostaining or RNA in situ hybridization for NF-κB regulated genes along with methods such as immunostaining for γH2AX or RNA in situ for senescence markers like p16INK4a and p21. These and related methods will be described in this chapter.

Key words

Senescence Aging NF-κB SASP 


  1. 1.
    Sen R, Baltimore D (1986) Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47(6):921–928CrossRefGoogle Scholar
  2. 2.
    Zhang Q, Lenardo MJ, Baltimore D (2017) 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell 168(1):37–57CrossRefGoogle Scholar
  3. 3.
    Salminen A, Kaarniranta K (2009) NF-κB signaling in the aging process. J Clin Immunol 29(4):397–405CrossRefGoogle Scholar
  4. 4.
    Osorio FG, Soria-Valles C, Santiago-Fernández O, Freije JMP, López-Otín C (2016) NF-κB signaling as a driver of ageing. Int Rev Cell Mol Biol 326:133–174CrossRefGoogle Scholar
  5. 5.
    Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD (2011) NF-κB in aging and disease. Aging Dis 2(6):449–465PubMedPubMedCentralGoogle Scholar
  6. 6.
    Hoffmann A, Baltimore D (2006) Circuitry of nuclear factor kappaB signaling. Immunol Rev 210:171–186CrossRefGoogle Scholar
  7. 7.
    Hayden MS, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132(3):344–362CrossRefGoogle Scholar
  8. 8.
    Perkins ND (2007) Integrating cell-signalling pathways with NF-[kappa]B and IKK function. Nat Rev Mol Cell Biol 8(1):49–62CrossRefGoogle Scholar
  9. 9.
    Sun S-C (2011) Non-canonical NF-[kappa]B signaling pathway. Cell Res 21(1):71–85CrossRefGoogle Scholar
  10. 10.
    Kriete A, Mayo KL (2009) Atypical pathways of NF-κB activation and aging. Exp Gerontol 44(4):250–255CrossRefGoogle Scholar
  11. 11.
    Siomek A (2012) NF-kappaB signaling pathway and free radical impact. Acta Biochim Pol 59(3):323–331CrossRefGoogle Scholar
  12. 12.
    Kato T, Delhase M, Hoffmann A, Karin M (2003) CK2 is a C-terminal IκB kinase responsible for NF-κB activation during the UV response. Mol Cell 12(4):829–839CrossRefGoogle Scholar
  13. 13.
    Schoonbroodt S, Ferreira V, Best-Belpomme M, Boelaert JR, Legrand-Poels S, Korner M, Piette J (2000) Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of IκBα in NF-κB activation by an oxidative stress. J Immunol 164(8):4292–4300CrossRefGoogle Scholar
  14. 14.
    Miyamoto S (2011) Nuclear initiated NF-[kappa]B signaling: NEMO and ATM take center stage. Cell Res 21(1):116–130CrossRefGoogle Scholar
  15. 15.
    Salminen A, Suuronen T, Huuskonen J, Kaarniranta K (2008) NEMO shuttle: a link between DNA damage and NF-κB activation in progeroid syndromes? Biochem Biophys Res Commun 367(4):715–718CrossRefGoogle Scholar
  16. 16.
    Baker RG, Hayden MS, Ghosh S (2011) NF-κB, inflammation, and metabolic disease. Cell Metab 13(1):11–22CrossRefGoogle Scholar
  17. 17.
    Amiri KI, Richmond A (2005) Role of nuclear factor-κ B in melanoma. Cancer Metastasis Rev 24(2):301–313CrossRefGoogle Scholar
  18. 18.
    Helenius M, Hänninen M, Lehtinen SK, Salminen A (1996) Changes associated with aging and replicative senescence in the regulation of transcription factor nuclear factor-kappa B. Biochem J 318. (Pt 2:603–608CrossRefGoogle Scholar
  19. 19.
    Helenius M, Hänninen M, Lehtinen SK, Salminen A (1996) Aging-induced up-regulation of nuclear binding activities of oxidative stress responsive NF-kB transcription factor in mouse cardiac muscle. J Mol Cell Cardiol 28(3):487–498CrossRefGoogle Scholar
  20. 20.
    Korhonen P, Helenius M, Salminen A (1997) Age-related changes in the regulation of transcription factor NF-κB in rat brain. Neurosci Lett 225(1):61–64CrossRefGoogle Scholar
  21. 21.
    Spencer NF, Poynter ME, Im SY, Daynes RA (1997) Constitutive activation of NF-kappa B in an animal model of aging. Int Immunol 9(10):1581–1588CrossRefGoogle Scholar
  22. 22.
    Poynter ME, Daynes RA (1998) Peroxisome proliferator-activated receptor α activation modulates cellular redox status, represses nuclear factor-κB Signaling, and reduces inflammatory cytokine production in aging. J Biol Chem 273(49):32833–32841CrossRefGoogle Scholar
  23. 23.
    Adler AS, Sinha S, Kawahara TLA, Zhang JY, Segal E, Chang HY (2007) Motif module map reveals enforcement of aging by continual NF-κB activity. Genes Dev 21(24):3244–3257CrossRefGoogle Scholar
  24. 24.
    Bernard D, Gosselin K, Monte D, Vercamer C, Bouali F, Pourtier A, Vandenbunder B, Abbadie C (2004) Involvement of Rel/nuclear factor-κB transcription factors in keratinocyte senescence. Cancer Res 64(2):472–481CrossRefGoogle Scholar
  25. 25.
    Seitz CS, Deng H, Hinata K, Lin Q, Khavari PA (2000) Nuclear factor κB subunits induce epithelial cell growth arrest. Cancer Res 60(15):4085–4092PubMedGoogle Scholar
  26. 26.
    Zhi H, Yang L, Kuo Y-L, Ho Y-K, Shih H-M, Giam C-Z (2011) NF-κB hyper-activation by HTLV-1 tax induces cellular senescence, but can be alleviated by the viral anti-sense protein HBZ. PLoS Pathog 7(4):e1002025CrossRefGoogle Scholar
  27. 27.
    Gerondakis S, Grumont R, Gugasyan R, Wong L, Isomura I, Ho W, Banerjee A (2006) Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models. Oncogene 25:6781CrossRefGoogle Scholar
  28. 28.
    Pasparakis M, Luedde T, Schmidt-Supprian M (2006) Dissection of the NF-κB signalling cascade in transgenic and knockout mice. Cell Death Differ 13:861CrossRefGoogle Scholar
  29. 29.
    Cartwright T, Perkins ND, Wilson CL (2016) NFKB1: a suppressor of inflammation, ageing and cancer. FEBS J 283(10):1812–1822CrossRefGoogle Scholar
  30. 30.
    Sha WC, Liou HC, Tuomanen EI, Baltimore D (1995) Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 80(2):321–330CrossRefGoogle Scholar
  31. 31.
    Bernal GM, Wahlstrom JS, Crawley CD, Cahill KE, Pytel P, Liang H, Kang S, Weichselbaum RR, Yamini B (2014) Loss of Nfkb1 leads to early onset aging. Aging (Albany NY) 6(11):931–943CrossRefGoogle Scholar
  32. 32.
    Carrero D, Soria-Valles C, López-Otín C (2016) Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells. Dis Model Mech 9(7):719–735CrossRefGoogle Scholar
  33. 33.
    Vermeij WP, Hoeijmakers JHJ, Pothof J (2016) Genome integrity in aging: human syndromes, mouse models, and therapeutic options. Annu Rev Pharmacol 56(1):427–445CrossRefGoogle Scholar
  34. 34.
    Niedernhofer LJ, Garinis GA, Raams A, Lalai AS, Robinson AR, Appeldoorn E, Odijk H, Oostendorp R, Ahmad A, van Leeuwen W, Theil AF, Vermeulen W, van der Horst GTJ, Meinecke P, Kleijer WJ, Vijg J, Jaspers NGJ, Hoeijmakers JHJ (2006) A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444:1038CrossRefGoogle Scholar
  35. 35.
    Tilstra JS, Robinson AR, Wang J, Gregg SQ, Clauson CL, Reay DP, Nasto LA, St Croix CM, Usas A, Vo N, Huard J, Clemens PR, Stolz DB, Guttridge DC, Watkins SC, Garinis GA, Wang Y, Niedernhofer LJ, Robbins PD (2012) NF-kappaB inhibition delays DNA damage-induced senescence and aging in mice. J Clin Invest 122(7):2601–2612CrossRefGoogle Scholar
  36. 36.
    Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312(5776):1059–1063CrossRefGoogle Scholar
  37. 37.
    Osorio FG, Obaya ÁJ, López-Otín C, Freije JMP (2009) Accelerated ageing: from mechanism to therapy through animal models. Transgenic Res 18(1):7–15CrossRefGoogle Scholar
  38. 38.
    Pendás AM, Zhou Z, Cadiñanos J, Freije JMP, Wang J, Hultenby K, Astudillo A, Wernerson A, Rodríguez F, Tryggvason K, López-Otín C (2002) Defective prelamin a processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase–deficient mice. Nat Genet 31:94CrossRefGoogle Scholar
  39. 39.
    Osorio FG, Navarro CL, Cadiñanos J, López-Mejía IC, Quirós PM, Bartoli C, Rivera J, Tazi J, Guzmán G, Varela I, Depetris D, de Carlos F, Cobo J, Andrés V, De Sandre-Giovannoli A, Freije JMP, Lévy N, López-Otín C (2011) Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med 3(106):106ra107CrossRefGoogle Scholar
  40. 40.
    Osorio FG, Bárcena C, Soria-Valles C, Ramsay AJ, de Carlos F, Cobo J, Fueyo A, Freije JMP, López-Otín C (2012) Nuclear lamina defects cause ATM-dependent NF-κB activation and link accelerated aging to a systemic inflammatory response. Genes Dev 26(20):2311–2324CrossRefGoogle Scholar
  41. 41.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular Medicine and Center on AgingThe Scripps Research InstituteJupiterUSA
  2. 2.Disease Biology and Cellular PharmacologyRecursion PharmaceuticalsSalt LakeUSA
  3. 3.Aging Institute, Division of Geriatric Medicine, Department of MedicineUniversity of PittsburghPittsburghUSA
  4. 4.Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisUSA

Personalised recommendations