Advertisement

Mouse Models of Accelerated Cellular Senescence

  • Matthew J. Yousefzadeh
  • Kendra I. Melos
  • Luise Angelini
  • Christin E. Burd
  • Paul D. Robbins
  • Laura J. Niedernhofer
Part of the Methods in Molecular Biology book series (MIMB, volume 1896)

Abstract

Senescent cells accumulate in multiple tissues as virtually all vertebrate organisms age. Senescence is a highly conserved response to many forms of cellular stress intended to block the propagation of damaged cells. Senescent cells have been demonstrated to play a causal role in aging via their senescence-associated secretory phenotype and by impeding tissue regeneration. Depletion of senescent cells either through genetic or pharmacologic methods has been demonstrated to extend murine lifespan and delay the onset of age-related diseases. Measuring the burden and location of senescent cells in vivo remains challenging, as there is no marker unique to senescent cells. Here, we describe multiple methods to detect the presence and extent of cellular senescence in preclinical models, with a special emphasis on murine models of accelerated aging that exhibit a more rapid onset of cellular senescence.

Key words

Senescence Progeria Aging Murine models Biomarkers Gene expression 

Notes

Acknowledgments

This work was supported by the NIH grants P01-AG043376 (PDR, LJN), U19-AG056278 (PDR, LJN), and Glenn Foundation (LJN, CEB).

References

  1. 1.
    Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15(7):397–408.  https://doi.org/10.1038/nrc3960 CrossRefGoogle Scholar
  2. 2.
    Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705.  https://doi.org/10.1146/annurev-physiol-030212-183653 CrossRefGoogle Scholar
  3. 3.
    Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, d'Adda di Fagagna F (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444(7119):638–642.  https://doi.org/10.1038/nature05327 CrossRefGoogle Scholar
  4. 4.
    Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E, Niforou K, Zoumpourlis VC, Takaoka M, Nakagawa H, Tort F, Fugger K, Johansson F, Sehested M, Andersen CL, Dyrskjot L, Orntoft T, Lukas J, Kittas C, Helleday T, Halazonetis TD, Bartek J, Gorgoulis VG (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444(7119):633–637.  https://doi.org/10.1038/nature05268 CrossRefGoogle Scholar
  5. 5.
    Campisi J, d'Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740.  https://doi.org/10.1038/nrm2233 CrossRefGoogle Scholar
  6. 6.
    Guarente L, Partridge L, Wallace DC (2008) Molecular biology of aging. Cold Spring Harbor monograph series, vol 51. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  7. 7.
    van Deursen JM (2014) The role of senescent cells in ageing. Nature 509(7501):439–446.  https://doi.org/10.1038/nature13193 CrossRefGoogle Scholar
  8. 8.
    Munoz-Espin D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15(7):482–496.  https://doi.org/10.1038/nrm3823 CrossRefGoogle Scholar
  9. 9.
    Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118.  https://doi.org/10.1146/annurev-pathol-121808-102144 CrossRefGoogle Scholar
  10. 10.
    Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123(3):966–972.  https://doi.org/10.1172/JCI64098 CrossRefGoogle Scholar
  11. 11.
    Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, Sharpless NE (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443(7110):453–457.  https://doi.org/10.1038/nature05092 CrossRefGoogle Scholar
  12. 12.
    Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, Cheng T, DePinho RA, Sharpless NE, Scadden DT (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443(7110):421–426.  https://doi.org/10.1038/nature05159 CrossRefGoogle Scholar
  13. 13.
    Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443(7110):448–452.  https://doi.org/10.1038/nature05091 CrossRefGoogle Scholar
  14. 14.
    Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114(9):1299–1307.  https://doi.org/10.1172/JCI22475 CrossRefGoogle Scholar
  15. 15.
    Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG, Thomas NE, Sharpless NE (2009) Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8(4):439–448.  https://doi.org/10.1111/j.1474-9726.2009.00489.x CrossRefGoogle Scholar
  16. 16.
    Ressler S, Bartkova J, Niederegger H, Bartek J, Scharffetter-Kochanek K, Jansen-Durr P, Wlaschek M (2006) p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5(5):379–389.  https://doi.org/10.1111/j.1474-9726.2006.00231.x CrossRefGoogle Scholar
  17. 17.
    Waaijer ME, Parish WE, Strongitharm BH, van Heemst D, Slagboom PE, de Craen AJ, Sedivy JM, Westendorp RG, Gunn DA, Maier AB (2012) The number of p16INK4a positive cells in human skin reflects biological age. Aging Cell 11(4):722–725.  https://doi.org/10.1111/j.1474-9726.2012.00837.x CrossRefGoogle Scholar
  18. 18.
    Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311(5765):1257.  https://doi.org/10.1126/science.1122446 CrossRefGoogle Scholar
  19. 19.
    Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530(7589):184–189.  https://doi.org/10.1038/nature16932 CrossRefGoogle Scholar
  20. 20.
    Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236.  https://doi.org/10.1038/nature10600 CrossRefGoogle Scholar
  21. 21.
    Miller JK (2001) Escaping senescence: demographic data from the three-toed box turtle (Terrapene carolina triunguis). Exp Gerontol 36(4–6):829–832CrossRefGoogle Scholar
  22. 22.
    Finch CE (2009) Update on slow aging and negligible senescence--a mini-review. Gerontology 55(3):307–313.  https://doi.org/10.1159/000215589 CrossRefGoogle Scholar
  23. 23.
    Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M, O'Hara SP, LaRusso NF, Miller JD, Roos CM, Verzosa GC, LeBrasseur NK, Wren JD, Farr JN, Khosla S, Stout MB, McGowan SJ, Fuhrmann-Stroissnigg H, Gurkar AU, Zhao J, Colangelo D, Dorronsoro A, Ling YY, Barghouthy AS, Navarro DC, Sano T, Robbins PD, Niedernhofer LJ, Kirkland JL (2015) The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14(4):644–658.  https://doi.org/10.1111/acel.12344 CrossRefGoogle Scholar
  24. 24.
    Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, Grassi D, Gregg SQ, Stripay JL, Dorronsoro A, Corbo L, Tang P, Bukata C, Ring N, Giacca M, Li X, Tchkonia T, Kirkland JL, Niedernhofer LJ, Robbins PD (2017) Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 8(1):422.  https://doi.org/10.1038/s41467-017-00314-z CrossRefGoogle Scholar
  25. 25.
    Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, Luo Y, Wang X, Aykin-Burns N, Krager K, Ponnappan U, Hauer-Jensen M, Meng A, Zhou D (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22(1):78–83.  https://doi.org/10.1038/nm.4010 CrossRefGoogle Scholar
  26. 26.
    Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, Negley BA, Sfeir JG, Ogrodnik MB, Hachfeld CM, LeBrasseur NK, Drake MT, Pignolo RJ, Pirtskhalava T, Tchkonia T, Oursler MJ, Kirkland JL, Khosla S (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23(9):1072–1079.  https://doi.org/10.1038/nm.4385 CrossRefGoogle Scholar
  27. 27.
    Lehmann M, Korfei M, Mutze K, Klee S, Skronska-Wasek W, Alsafadi HN, Ota C, Costa R, Schiller HB, Lindner M, Wagner DE, Gunther A, Konigshoff M (2017) Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur Respir J 50(2).  https://doi.org/10.1183/13993003.02367-2016 CrossRefGoogle Scholar
  28. 28.
    Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A, Day CP, Burt A, Palmer A, Anstee QM, Grellscheid SN, Hoeijmakers JHJ, Barnhoorn S, Mann DA, Bird TG, Vermeij WP, Kirkland JL, Passos JF, von Zglinicki T, Jurk D (2017) Cellular senescence drives age-dependent hepatic steatosis. Nat Commun 8:15691.  https://doi.org/10.1038/ncomms15691 CrossRefGoogle Scholar
  29. 29.
    Roos CM, Zhang B, Palmer AK, Ogrodnik MB, Pirtskhalava T, Thalji NM, Hagler M, Jurk D, Smith LA, Casaclang-Verzosa G, Zhu Y, Schafer MJ, Tchkonia T, Kirkland JL, Miller JD (2016) Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15(5):973–977.  https://doi.org/10.1111/acel.12458 CrossRefGoogle Scholar
  30. 30.
    Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ, Oberg AL, Birch J, Salmonowicz H, Zhu Y, Mazula DL, Brooks RW, Fuhrmann-Stroissnigg H, Pirtskhalava T, Prakash YS, Tchkonia T, Robbins PD, Aubry MC, Passos JF, Kirkland JL, Tschumperlin DJ, Kita H, LeBrasseur NK (2017) Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8:14532.  https://doi.org/10.1038/ncomms14532 CrossRefGoogle Scholar
  31. 31.
    Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM, Stryeck S, Rijksen Y, van Willigenburg H, Feijtel DA, van der Pluijm I, Essers J, van Cappellen WA, van IWF, Houtsmuller AB, Pothof J, de Bruin RWF, Madl T, Hoeijmakers JHJ, Campisi J, de Keizer PLJ (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to Chemotoxicity and aging. Cell 169(1):132–147 e116.  https://doi.org/10.1016/j.cell.2017.02.031 CrossRefGoogle Scholar
  32. 32.
    Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM (2016) Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354(6311):472–477.  https://doi.org/10.1126/science.aaf6659 CrossRefGoogle Scholar
  33. 33.
    Moncsek A, Al-Suraih MS, Trussoni CE, O'Hara SP, Splinter PL, Zuber C, Patsenker E, Valli PV, Fingas CD, Weber A, Zhu Y, Tchkonia T, Kirkland JL, Gores GJ, Mullhaupt B, LaRusso NF, Mertens JC (2018) Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2(−/−) ) mice. Hepatology 67(1):247–259.  https://doi.org/10.1002/hep.29464 CrossRefGoogle Scholar
  34. 34.
    Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S, Vadai E, Dassa L, Shahar E, Condiotti R, Ben-Porath I, Krizhanovsky V (2016) Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun 7:11190.  https://doi.org/10.1038/ncomms11190 CrossRefGoogle Scholar
  35. 35.
    Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, Chung JW, Kim DH, Poon Y, David N, Baker DJ, van Deursen JM, Campisi J, Elisseeff JH (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23(6):775–781.  https://doi.org/10.1038/nm.4324 CrossRefGoogle Scholar
  36. 36.
    Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson KO, Giles CB, Wren JD, Niedernhofer LJ, Robbins PD, Kirkland JL (2015) Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15(3):428–435.  https://doi.org/10.1111/acel.12445 CrossRefGoogle Scholar
  37. 37.
    Andressoo JO, Mitchell JR, de Wit J, Hoogstraten D, Volker M, Toussaint W, Speksnijder E, Beems RB, van Steeg H, Jans J, de Zeeuw CI, Jaspers NG, Raams A, Lehmann AR, Vermeulen W, Hoeijmakers JH, van der Horst GT (2006) An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria. Cancer Cell 10(2):121–132.  https://doi.org/10.1016/j.ccr.2006.05.027 CrossRefGoogle Scholar
  38. 38.
    Chiche A, Le Roux I, von Joest M, Sakai H, Aguin SB, Cazin C, Salam R, Fiette L, Alegria O, Flamant P, Tajbakhsh S, Li H (2017) Injury-induced senescence enables in vivo reprogramming in skeletal muscle. Cell Stem Cell 20(3):407–414 e404.  https://doi.org/10.1016/j.stem.2016.11.020 CrossRefGoogle Scholar
  39. 39.
    Maejima Y, Adachi S, Ito H, Hirao K, Isobe M (2008) Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell 7(2):125–136.  https://doi.org/10.1111/j.1474-9726.2007.00358.x CrossRefGoogle Scholar
  40. 40.
    Jurk D, Wang C, Miwa S, Maddick M, Korolchuk V, Tsolou A, Gonos ES, Thrasivoulou C, Saffrey MJ, Cameron K, von Zglinicki T (2012) Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11(6):996–1004.  https://doi.org/10.1111/j.1474-9726.2012.00870.x CrossRefGoogle Scholar
  41. 41.
    Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22(16):4212–4222.  https://doi.org/10.1093/emboj/cdg417 CrossRefGoogle Scholar
  42. 42.
    Munoz-Espin D, Canamero M, Maraver A, Gomez-Lopez G, Contreras J, Murillo-Cuesta S, Rodriguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, Serrano M (2013) Programmed cell senescence during mammalian embryonic development. Cell 155(5):1104–1118.  https://doi.org/10.1016/j.cell.2013.10.019 CrossRefGoogle Scholar
  43. 43.
    Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM, Bardeesy N, Castrillon DH, Beach DH, Sharpless NE (2013) Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 152(1–2):340–351.  https://doi.org/10.1016/j.cell.2012.12.010 CrossRefGoogle Scholar
  44. 44.
    Gadd M, Pisc C, Branda J, Ionescu-Tiba V, Nikolic Z, Yang C, Wang T, Shackleford GM, Cardiff RD, Schmidt EV (2001) Regulation of cyclin D1 and p16(INK4A) is critical for growth arrest during mammary involution. Cancer Res 61(24):8811–8819Google Scholar
  45. 45.
    Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dolle ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31(6):722–733.  https://doi.org/10.1016/j.devcel.2014.11.012 CrossRefGoogle Scholar
  46. 46.
    Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL (2015) Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes 64(7):2289–2298.  https://doi.org/10.2337/db14-1820 CrossRefGoogle Scholar
  47. 47.
    Harkema L, Youssef SA, de Bruin A (2016) Pathology of mouse models of accelerated aging. Vet Pathol 53(2):366–389.  https://doi.org/10.1177/0300985815625169 CrossRefGoogle Scholar
  48. 48.
    Gurkar AU, Niedernhofer LJ (2015) Comparison of mice with accelerated aging caused by distinct mechanisms. Exp Gerontol 68:43–50.  https://doi.org/10.1016/j.exger.2015.01.045 CrossRefGoogle Scholar
  49. 49.
    Burtner CR, Kennedy BK (2010) Progeria syndromes and ageing: what is the connection? Nat Rev Mol Cell Biol 11(8):567–578.  https://doi.org/10.1038/nrm2944 CrossRefGoogle Scholar
  50. 50.
    Niedernhofer LJ, Garinis GA, Raams A, Lalai AS, Robinson AR, Appeldoorn E, Odijk H, Oostendorp R, Ahmad A, van Leeuwen W, Theil AF, Vermeulen W, van der Horst GT, Meinecke P, Kleijer WJ, Vijg J, Jaspers NG, Hoeijmakers JH (2006) A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444(7122):1038–1043.  https://doi.org/10.1038/nature05456 CrossRefGoogle Scholar
  51. 51.
    Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Unnikrishnan A, Deepa SS, Liu Y, Li Y, Ikeno Y, Sosnowska D, Van Remmen H, Richardson A (2017) A new role for oxidative stress in aging: the accelerated aging phenotype in Sod1(−/)(−) mice is correlated to increased cellular senescence. Redox Biol 11:30–37.  https://doi.org/10.1016/j.redox.2016.10.014 CrossRefGoogle Scholar
  53. 53.
    Perez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, Richardson A (2009) Is the oxidative stress theory of aging dead? Biochim Biophys Acta 1790(10):1005–1014.  https://doi.org/10.1016/j.bbagen.2009.06.003 CrossRefGoogle Scholar
  54. 54.
    Jacob KD, Noren Hooten N, Trzeciak AR, Evans MK (2013) Markers of oxidant stress that are clinically relevant in aging and age-related disease. Mech Ageing Dev 134(3–4):139–157.  https://doi.org/10.1016/j.mad.2013.02.008 CrossRefGoogle Scholar
  55. 55.
    Wang J, Clauson CL, Robbins PD, Niedernhofer LJ, Wang Y (2012) The oxidative DNA lesions 8,5′-cyclopurines accumulate with aging in a tissue-specific manner. Aging Cell 11(4):714–716.  https://doi.org/10.1111/j.1474-9726.2012.00828.x CrossRefGoogle Scholar
  56. 56.
    Maher P (2005) The effects of stress and aging on glutathione metabolism. Ageing Res Rev 4(2):288–314.  https://doi.org/10.1016/j.arr.2005.02.005 CrossRefGoogle Scholar
  57. 57.
    Zhang H, Davies KJA, Forman HJ (2015) Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 88(Pt B):314–336.  https://doi.org/10.1016/j.freeradbiomed.2015.05.036 CrossRefGoogle Scholar
  58. 58.
    Zhang Y, Ikeno Y, Bokov A, Gelfond J, Jaramillo C, Zhang HM, Liu Y, Qi W, Hubbard G, Richardson A, Van Remmen H (2013) Dietary restriction attenuates the accelerated aging phenotype of Sod1(−/−) mice. Free Radic Biol Med 60:300–306.  https://doi.org/10.1016/j.freeradbiomed.2013.02.026 CrossRefGoogle Scholar
  59. 59.
    Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308(5730):1909–1911.  https://doi.org/10.1126/science.1106653 CrossRefGoogle Scholar
  60. 60.
    Guo Y, Kim C, Ahmad S, Zhang J, Mao Y (2012) CENP-E--dependent BubR1 autophosphorylation enhances chromosome alignment and the mitotic checkpoint. J Cell Biol 198(2):205–217.  https://doi.org/10.1083/jcb.201202152 CrossRefGoogle Scholar
  61. 61.
    Baker DJ, Dawlaty MM, Wijshake T, Jeganathan KB, Malureanu L, van Ree JH, Crespo-Diaz R, Reyes S, Seaburg L, Shapiro V, Behfar A, Terzic A, van de Sluis B, van Deursen JM (2013) Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat Cell Biol 15(1):96–102.  https://doi.org/10.1038/ncb2643 CrossRefGoogle Scholar
  62. 62.
    Weaver RL, Limzerwala JF, Naylor RM, Jeganathan KB, Baker DJ, van Deursen JM (2016) BubR1 alterations that reinforce mitotic surveillance act against aneuploidy and cancer. Elife 5.  https://doi.org/10.7554/eLife.16620
  63. 63.
    Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P, van Deursen JM (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 36(7):744–749.  https://doi.org/10.1038/ng1382 CrossRefGoogle Scholar
  64. 64.
    Hartman TK, Wengenack TM, Poduslo JF, van Deursen JM (2007) Mutant mice with small amounts of BubR1 display accelerated age-related gliosis. Neurobiol Aging 28(6):921–927.  https://doi.org/10.1016/j.neurobiolaging.2006.05.012 CrossRefGoogle Scholar
  65. 65.
    Matsumoto T, Baker DJ, d'Uscio LV, Mozammel G, Katusic ZS, van Deursen JM (2007) Aging-associated vascular phenotype in mutant mice with low levels of BubR1. Stroke 38(3):1050–1056.  https://doi.org/10.1161/01.STR.0000257967.86132.01 CrossRefGoogle Scholar
  66. 66.
    Baker DJ, Perez-Terzic C, Jin F, Pitel KS, Niederlander NJ, Jeganathan K, Yamada S, Reyes S, Rowe L, Hiddinga HJ, Eberhardt NL, Terzic A, van Deursen JM (2008) Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat Cell Biol 10(7):825–836.  https://doi.org/10.1038/ncb1744 CrossRefGoogle Scholar
  67. 67.
    Baker DJ, Weaver RL, van Deursen JM (2013) p21 both attenuates and drives senescence and aging in BubR1 progeroid mice. Cell Rep 3(4):1164–1174.  https://doi.org/10.1016/j.celrep.2013.03.028 CrossRefGoogle Scholar
  68. 68.
    Kudlow BA, Kennedy BK, Monnat RJ Jr (2007) Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 8(5):394–404.  https://doi.org/10.1038/nrm2161 CrossRefGoogle Scholar
  69. 69.
    Hennekam RC (2006) Hutchinson-Gilford progeria syndrome: review of the phenotype. Am J Med Genet A 140(23):2603–2624.  https://doi.org/10.1002/ajmg.a.31346 CrossRefGoogle Scholar
  70. 70.
    Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS (2003) Recurrent de novo point mutations in Lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423(6937):293–298.  https://doi.org/10.1038/nature01629 CrossRefGoogle Scholar
  71. 71.
    De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, Levy N (2003) Lamin a truncation in Hutchinson-Gilford progeria. Science 300(5628):2055.  https://doi.org/10.1126/science.1084125 CrossRefGoogle Scholar
  72. 72.
    Cao H, Hegele RA (2003) LMNA is mutated in Hutchinson-Gilford progeria (MIM 176670) but not in Wiedemann-Rautenstrauch progeroid syndrome (MIM 264090). J Hum Genet 48(5):271–274.  https://doi.org/10.1007/s10038-003-0025-3 CrossRefGoogle Scholar
  73. 73.
    Moulson CL, Go G, Gardner JM, van der Wal AC, Smitt JH, van Hagen JM, Miner JH (2005) Homozygous and compound heterozygous mutations in ZMPSTE24 cause the laminopathy restrictive dermopathy. J Invest Dermatol 125(5):913–919.  https://doi.org/10.1111/j.0022-202X.2005.23846.x CrossRefGoogle Scholar
  74. 74.
    Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL (2003) A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423(6937):298–301.  https://doi.org/10.1038/nature01631 CrossRefGoogle Scholar
  75. 75.
    Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B (1999) Loss of A-type Lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147(5):913–920CrossRefGoogle Scholar
  76. 76.
    Frock RL, Kudlow BA, Evans AM, Jameson SA, Hauschka SD, Kennedy BK (2006) Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev 20(4):486–500.  https://doi.org/10.1101/gad.1364906 CrossRefGoogle Scholar
  77. 77.
    Varga R, Eriksson M, Erdos MR, Olive M, Harten I, Kolodgie F, Capell BC, Cheng J, Faddah D, Perkins S, Avallone H, San H, Qu X, Ganesh S, Gordon LB, Virmani R, Wight TN, Nabel EG, Collins FS (2006) Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 103(9):3250–3255.  https://doi.org/10.1073/pnas.0600012103 CrossRefGoogle Scholar
  78. 78.
    Yang SH, Bergo MO, Toth JI, Qiao X, Hu Y, Sandoval S, Meta M, Bendale P, Gelb MH, Young SG, Fong LG (2005) Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc Natl Acad Sci U S A 102(29):10291–10296.  https://doi.org/10.1073/pnas.0504641102 CrossRefGoogle Scholar
  79. 79.
    Fong LG, Frost D, Meta M, Qiao X, Yang SH, Coffinier C, Young SG (2006) A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311(5767):1621–1623.  https://doi.org/10.1126/science.1124875 CrossRefGoogle Scholar
  80. 80.
    Pendas AM, Zhou Z, Cadinanos J, Freije JM, Wang J, Hultenby K, Astudillo A, Wernerson A, Rodriguez F, Tryggvason K, Lopez-Otin C (2002) Defective prelamin a processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet 31(1):94–99.  https://doi.org/10.1038/ng871 CrossRefGoogle Scholar
  81. 81.
    Benson EK, Lee SW, Aaronson SA (2010) Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence. J Cell Sci 123(Pt 15):2605–2612.  https://doi.org/10.1242/jcs.067306 CrossRefGoogle Scholar
  82. 82.
    Wheaton K, Campuzano D, Ma W, Sheinis M, Ho B, Brown GW, Benchimol S (2017) Progerin-induced replication stress facilitates premature senescence in Hutchinson-Gilford progeria syndrome. Mol Cell Biol 37(14).  https://doi.org/10.1128/MCB.00659-16
  83. 83.
    Liu B, Wang Z, Zhang L, Ghosh S, Zheng H, Zhou Z (2013) Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model. Nat Commun 4:1868.  https://doi.org/10.1038/ncomms2885 CrossRefGoogle Scholar
  84. 84.
    Manandhar M, Boulware KS, Wood RD (2015) The ERCC1 and ERCC4 (XPF) genes and gene products. Gene 569(2):153–161.  https://doi.org/10.1016/j.gene.2015.06.026 CrossRefGoogle Scholar
  85. 85.
    Weeda G, Donker I, de Wit J, Morreau H, Janssens R, Vissers CJ, Nigg A, van Steeg H, Bootsma D, Hoeijmakers JH (1997) Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr Biol 7(6):427–439CrossRefGoogle Scholar
  86. 86.
    Tian M, Shinkura R, Shinkura N, Alt FW (2004) Growth retardation, early death, and DNA repair defects in mice deficient for the nucleotide excision repair enzyme XPF. Mol Cell Biol 24(3):1200–1205CrossRefGoogle Scholar
  87. 87.
    McWhir J, Selfridge J, Harrison DJ, Squires S, Melton DW (1993) Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nat Genet 5(3):217–224.  https://doi.org/10.1038/ng1193-217 CrossRefGoogle Scholar
  88. 88.
    Selfridge J, Hsia KT, Redhead NJ, Melton DW (2001) Correction of liver dysfunction in DNA repair-deficient mice with an ERCC1 transgene. Nucleic Acids Res 29(22):4541–4550CrossRefGoogle Scholar
  89. 89.
    Dolle ME, Kuiper RV, Roodbergen M, Robinson J, de Vlugt S, Wijnhoven SW, Beems RB, de la Fonteyne L, de With P, van der Pluijm I, Niedernhofer LJ, Hasty P, Vijg J, Hoeijmakers JH, van Steeg H (2011) Broad segmental progeroid changes in short-lived Ercc1−/Δ7 mice. Pathobiol Aging Age Relat Dis 1.  https://doi.org/10.3402/pba.v1i0.7219 CrossRefGoogle Scholar
  90. 90.
    Gregg SQ, Robinson AR, Niedernhofer LJ (2011) Physiological consequences of defects in ERCC1-XPF DNA repair endonuclease. DNA Repair 10(7):781–791.  https://doi.org/10.1016/j.dnarep.2011.04.026 CrossRefGoogle Scholar
  91. 91.
    Goss JR, Stolz DB, Robinson AR, Zhang M, Arbujas N, Robbins PD, Glorioso JC, Niedernhofer LJ (2011) Premature aging-related peripheral neuropathy in a mouse model of progeria. Mech Ageing Dev 132(8–9):437–442.  https://doi.org/10.1016/j.mad.2011.04.010 CrossRefGoogle Scholar
  92. 92.
    Spoor M, Nagtegaal AP, Ridwan Y, Borgesius NZ, van Alphen B, van der Pluijm I, Hoeijmakers JH, Frens MA, Borst JG (2012) Accelerated loss of hearing and vision in the DNA-repair deficient Ercc1(delta/−) mouse. Mech Ageing Dev 133(2–3):59–67.  https://doi.org/10.1016/j.mad.2011.12.003 CrossRefGoogle Scholar
  93. 93.
    de Waard MC, van der Pluijm I, Zuiderveen Borgesius N, Comley LH, Haasdijk ED, Rijksen Y, Ridwan Y, Zondag G, Hoeijmakers JH, Elgersma Y, Gillingwater TH, Jaarsma D (2010) Age-related motor neuron degeneration in DNA repair-deficient Ercc1 mice. Acta Neuropathol 120(4):461–475.  https://doi.org/10.1007/s00401-010-0715-9 CrossRefGoogle Scholar
  94. 94.
    Vo N, Seo HY, Robinson A, Sowa G, Bentley D, Taylor L, Studer R, Usas A, Huard J, Alber S, Watkins SC, Lee J, Coehlo P, Wang D, Loppini M, Robbins PD, Niedernhofer LJ, Kang J (2010) Accelerated aging of intervertebral discs in a mouse model of progeria. J Orthop Res 28(12):1600–1607.  https://doi.org/10.1002/jor.21153 CrossRefGoogle Scholar
  95. 95.
    Chen Q, Liu K, Robinson AR, Clauson CL, Blair HC, Robbins PD, Niedernhofer LJ, Ouyang H (2013) DNA damage drives accelerated bone aging via an NF-kappaB-dependent mechanism. J Bone Miner Res 28(5):1214–1228.  https://doi.org/10.1002/jbmr.1851 CrossRefGoogle Scholar
  96. 96.
    Roh DS, Du Y, Gabriele ML, Robinson AR, Niedernhofer LJ, Funderburgh JL (2013) Age-related dystrophic changes in corneal endothelium from DNA repair-deficient mice. Aging Cell 12(6):1122–1131.  https://doi.org/10.1111/acel.12143 CrossRefGoogle Scholar
  97. 97.
    Robinson AR, Yousefzadeh MJ, Rozgaja TA, Wang J, Li X, Tilstra JS, Feldman CH, Gregg SQ, Johnson CH, Skoda EM, Frantz MC, Bell-Temin H, Pope-Varsalona H, Gurkar AU, Nasto LA, Robinson RAS, Fuhrmann-Stroissnigg H, Czerwinska J, McGowan SJ, Cantu-Medellin N, Harris JB, Maniar S, Ross MA, Trussoni CE, LaRusso NF, Cifuentes-Pagano E, Pagano PJ, Tudek B, Vo NV, Rigatti LH, Opresko PL, Stolz DB, Watkins SC, Burd CE, Croix CMS, Siuzdak G, Yates NA, Robbins PD, Wang Y, Wipf P, Kelley EE, Niedernhofer LJ (2018) Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol 17:259–273.  https://doi.org/10.1016/j.redox.2018.04.007 CrossRefGoogle Scholar
  98. 98.
    Sorrentino JA, Krishnamurthy J, Tilley S, Alb JG Jr, Burd CE, Sharpless NE (2014) p16INK4a reporter mice reveal age-promoting effects of environmental toxicants. J Clin Invest 124(1):169–173.  https://doi.org/10.1172/JCI70960 CrossRefGoogle Scholar
  99. 99.
    Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein S, Jiang H, Stepczynska A, Wang C, Buer J, Lee HW, von Zglinicki T, Ganser A, Schirmacher P, Nakauchi H, Rudolph KL (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 39(1):99–105.  https://doi.org/10.1038/ng1937 CrossRefGoogle Scholar
  100. 100.
    Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A 93(24):13742–13747CrossRefGoogle Scholar
  101. 101.
    Robles SJ, Adami GR (1998) Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16(9):1113–1123.  https://doi.org/10.1038/sj.onc.1201862 CrossRefGoogle Scholar
  102. 102.
    Stein GH, Drullinger LF, Soulard A, Dulic V (1999) Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol 19(3):2109–2117CrossRefGoogle Scholar
  103. 103.
    Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interf Cytokine Res 29(6):313–326.  https://doi.org/10.1089/jir.2008.0027 CrossRefGoogle Scholar
  104. 104.
    Csoka AB, English SB, Simkevich CP, Ginzinger DG, Butte AJ, Schatten GP, Rothman FG, Sedivy JM (2004) Genome-scale expression profiling of Hutchinson-Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Aging Cell 3(4):235–243.  https://doi.org/10.1111/j.1474-9728.2004.00105.x CrossRefGoogle Scholar
  105. 105.
    Yousefzadeh MJ, Schafer MJ, Noren Hooten N, Atkinson EJ, Evans MK, Baker DJ, Quarles EK, Robbins PD, Ladiges WC, LeBrasseur NK, Niedernhofer LJ (2018) Circulating levels of monocyte chemoattractant protein-1 as a potential measure of biological age in mice and frailty in humans. Aging Cell 17(2).  https://doi.org/10.1111/acel.12706 CrossRefGoogle Scholar
  106. 106.
    Nelson JA, Krishnamurthy J, Menezes P, Liu Y, Hudgens MG, Sharpless NE, Eron JJ Jr (2012) Expression of p16(INK4a) as a biomarker of T-cell aging in HIV-infected patients prior to and during antiretroviral therapy. Aging Cell 11(5):916–918.  https://doi.org/10.1111/j.1474-9726.2012.00856.x CrossRefGoogle Scholar
  107. 107.
    Sanoff HK, Deal AM, Krishnamurthy J, Torrice C, Dillon P, Sorrentino J, Ibrahim JG, Jolly TA, Williams G, Carey LA, Drobish A, Gordon BB, Alston S, Hurria A, Kleinhans K, Rudolph KL, Sharpless NE, Muss HB (2014) Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J Natl Cancer Inst 106(4):dju057.  https://doi.org/10.1093/jnci/dju057 CrossRefGoogle Scholar
  108. 108.
    Rosko A, Hofmeister C, Benson D, Efebera Y, Huang Y, Gillahan J, Byrd JC, Burd CE (2015) Autologous hematopoietic stem cell transplant induces the molecular aging of T-cells in multiple myeloma. Bone Marrow Transplant 50(10):1379–1381.  https://doi.org/10.1038/bmt.2015.143 CrossRefGoogle Scholar
  109. 109.
    Wood WA, Krishnamurthy J, Mitin N, Torrice C, Parker JS, Snavely AC, Shea TC, Serody JS, Sharpless NE (2016) Chemotherapy and stem cell transplantation increase p16(INK4a) expression, a biomarker of T-cell aging. EBioMedicine 11:227–238.  https://doi.org/10.1016/j.ebiom.2016.08.029 CrossRefGoogle Scholar
  110. 110.
    Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D, Hwang ES (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5(2):187–195.  https://doi.org/10.1111/j.1474-9726.2006.00199.x CrossRefGoogle Scholar
  111. 111.
    Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92(20):9363–9367CrossRefGoogle Scholar
  112. 112.
    Zhao J, Fuhrmann-Stroissnigg H, Gurkar AU, Flores RR, Dorronsoro A, Stolz DB, St Croix CM, Niedernhofer LJ, Robbins PD (2017) Quantitative analysis of cellular senescence in culture and in vivo. Curr Protoc Cytom 79:9 51 51–59 51 25.  https://doi.org/10.1002/cpcy.16 CrossRefGoogle Scholar
  113. 113.
    Gregg SQ, Gutierrez V, Robinson AR, Woodell T, Nakao A, Ross MA, Michalopoulos GK, Rigatti L, Rothermel CE, Kamileri I, Garinis GA, Stolz DB, Niedernhofer LJ (2012) A mouse model of accelerated liver aging caused by a defect in DNA repair. Hepatology 55(2):609–621.  https://doi.org/10.1002/hep.24713 CrossRefGoogle Scholar
  114. 114.
    Tilstra JS, Robinson AR, Wang J, Gregg SQ, Clauson CL, Reay DP, Nasto LA, St Croix CM, Usas A, Vo N, Huard J, Clemens PR, Stolz DB, Guttridge DC, Watkins SC, Garinis GA, Wang Y, Niedernhofer LJ, Robbins PD (2012) NF-kappaB inhibition delays DNA damage-induced senescence and aging in mice. J Clin Invest 122(7):2601–2612.  https://doi.org/10.1172/JCI45785 CrossRefGoogle Scholar
  115. 115.
    Melk A, Schmidt BM, Takeuchi O, Sawitzki B, Rayner DC, Halloran PF (2004) Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int 65(2):510–520.  https://doi.org/10.1111/j.1523-1755.2004.00438.x CrossRefGoogle Scholar
  116. 116.
    Thompson LH (2012) Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 751(2):158–246.  https://doi.org/10.1016/j.mrrev.2012.06.002 CrossRefGoogle Scholar
  117. 117.
    Takayama K, Kawakami Y, Lavasani M, Mu X, Cummins JH, Yurube T, Kuroda R, Kurosaka M, Fu FH, Robbins PD, Niedernhofer LJ, Huard J (2017) mTOR signaling plays a critical role in the defects observed in muscle-derived stem/progenitor cells isolated from a murine model of accelerated aging. J Orthop Res 35(7):1375–1382.  https://doi.org/10.1002/jor.23409 CrossRefGoogle Scholar
  118. 118.
    Khan SY, Awad EM, Oszwald A, Mayr M, Yin X, Waltenberger B, Stuppner H, Lipovac M, Uhrin P, Breuss JM (2017) Premature senescence of endothelial cells upon chronic exposure to TNFalpha can be prevented by N-acetyl cysteine and plumericin. Sci Rep 7:39501.  https://doi.org/10.1038/srep39501 CrossRefGoogle Scholar
  119. 119.
    Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, Shirakawa K, Lim HW, Davis SS, Ramanathan A, Gerencser AA, Verdin E, Campisi J (2016) Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab 23(2):303–314.  https://doi.org/10.1016/j.cmet.2015.11.011 CrossRefGoogle Scholar
  120. 120.
    Bruunsgaard H, Skinhoj P, Pedersen AN, Schroll M, Pedersen BK (2000) Ageing, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis. Clin Exp Immunol 121(2):255–260CrossRefGoogle Scholar
  121. 121.
    Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, Rydkina E, Vujcic S, Balan K, Gitlin LKI II, Consiglio CR, Gollnick SO, Chernova OB, Gudkov AV (2017) p16(Ink4a) and senescence-associated beta-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging 9(8):1867–1884.  https://doi.org/10.18632/aging.101268 CrossRefGoogle Scholar
  122. 122.
    Niedernhofer LJ, Robbins PD (2018) Senotherapeutics for healthy ageing. Nat Rev Drug Discov 17(5):377.  https://doi.org/10.1038/nrd.2018.44 CrossRefGoogle Scholar
  123. 123.
    Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, White TA, Johnson KO, Stout MB, Mezera V, Giorgadze N, Jensen MD, LeBrasseur NK, Kirkland JL (2015) JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A 112(46):E6301–E6310.  https://doi.org/10.1073/pnas.1515386112 CrossRefGoogle Scholar
  124. 124.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622.  https://doi.org/10.1373/clinchem.2008.112797 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Matthew J. Yousefzadeh
    • 1
    • 2
    • 3
  • Kendra I. Melos
    • 3
  • Luise Angelini
    • 1
    • 2
    • 3
  • Christin E. Burd
    • 4
    • 5
  • Paul D. Robbins
    • 1
    • 2
    • 3
  • Laura J. Niedernhofer
    • 1
  1. 1.Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Molecular MedicineThe Scripps Research InstituteJupiterUSA
  4. 4.Department of Molecular GeneticsThe Ohio State UniversityColumbusUSA
  5. 5.Department of Cancer Biology and GeneticsThe Ohio State UniversityColumbusUSA

Personalised recommendations