Advertisement

Going Back to Basics: How to Master the Art of Making Scientifically Sound Questions

  • Thiago Gonçalves-SouzaEmail author
  • Diogo B. Provete
  • Michel V. Garey
  • Fernando R. da Silva
  • Ulysses Paulino Albuquerque
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Inspired by the famous quote of Leonardo da Vinci, this chapter builds upon the idea that practice without theory is blind and unpredictable. Indeed, theory without practice can be idle. Accordingly, progress in science is made through approaches that integrate hypothesis testing and falsifiability or that investigate weight of evidence for multiple hypothesis, such as the hypothetico-deductive method (HDM) and Bayesian techniques. Here, we provided a straightforward way to combine the HDM with statistical thinking to create a diagram that links variables by causal links, which can improve the scientific method and statistical literacy.

Key words

Hypothetico-deductive method Scientific flowchart Prediction P value 

Notes

Glossary1

Assumption

Conditions needed to sustain a hypothesis or build the theory.

Hypothesis

Testable statement derived from or representing various components of a theory.

Mechanism

Direct interaction of a causal relationship that results in a phenomenon.

Pattern

Repeated events, recurring entities or replicated relationships observed in time or space.

Phenomenon

An observable event, entity or relationship.

Prediction

A statement of expectation deduced from the logical structure or derived from the causal structure of a theory.

Process

A subset of phenomena in which events follow one another in time or space, which may or may not be causally connected. It is cause, mechanism or constraint explaining a pattern.

References

  1. 1.
    Popper K (1959) The logic of scientific discovery, 2nd edn. Routledge, LondonGoogle Scholar
  2. 2.
    Metz AM (2008) Teaching statistics in biology: using inquiry-based learning to strengthen understanding of statistical analysis in biology laboratory courses. CBE Life Sci Educ 7:317–326CrossRefGoogle Scholar
  3. 3.
    Horgan GW, Elston DA, Franklin MF, Glasbey CA, Hunter EA, Talbot M, Kempton RA, McNicol JW, Wright F (1999) Teaching statistics to biological research scientists. J R Stat Soc D Stat 48:393–400CrossRefGoogle Scholar
  4. 4.
    Phillips O, Gentry AH (1993) The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Econ Bot 47:33–43CrossRefGoogle Scholar
  5. 5.
    Phillips O, Gentry AH (1993) The useful plants of Tambopata, Peru: I. Statistical hypotheses tests with a new quantitative technique. Econ Bot 47:15–32CrossRefGoogle Scholar
  6. 6.
    Albuquerque UP, Hanazaki N (2009) Five problems in current ethnobotanical research – and some suggestions for strengthening them. Hum Ecol 37:653–661CrossRefGoogle Scholar
  7. 7.
    Neyman J, Pearson ES (1933) On the problem of the most efficient tests of statistical hypotheses. Phil T R Soc A 231:289–337CrossRefGoogle Scholar
  8. 8.
    Legendre P, Legendre L (2012) Num Ecol, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  9. 9.
    Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, CambridgeGoogle Scholar
  10. 10.
    Gonçalves PHS, Albuquerque UP, Medeiros PM (2016) The most commonly available woody plant species are the most useful for human populations: a meta-analysis. Ecol Appl 26:2238–2253CrossRefGoogle Scholar
  11. 11.
    MacDougall AS, Gilbert B, Levine JM (2009) Plant invasions and the niche. J Ecol 97:609–615CrossRefGoogle Scholar
  12. 12.
    Saul WC, Jeschke JM (2015) Eco-evolutionary experience in novel species interactions. Ecol Lett 18:236–245CrossRefGoogle Scholar
  13. 13.
    Platt JR (1964) Strong inference: certain systematic methods of scientific thinking may produce much more rapid progress than others. Science 146:347–353CrossRefGoogle Scholar
  14. 14.
    Gotelli NJ, Ellison AM (2012) A primer of ecological statistics, 2nd edn. Sinauer Associates Publishers, Sunderland, MAGoogle Scholar
  15. 15.
    Ford ED (2004) Scientific method for ecological research. Cambridge University Press, CambridgeGoogle Scholar
  16. 16.
    Martínez-Abraín A (2008) Statistical significance and biological relevance: a call for a more cautious interpretation of results in ecology. Acta Oecol 34:9–11CrossRefGoogle Scholar
  17. 17.
    Whitlock M, Schluter D (2015) The analysis of biological data, 2nd edn. Roberts and Co. Publishers, Greenwood Village, COGoogle Scholar
  18. 18.
    Ellison AM, Gotelli NJ, Inouye BD, Strong DR (2014) P values, hypothesis testing, and model selection: it’s déjà vu all over again. Ecology 95:609–610CrossRefGoogle Scholar
  19. 19.
    McIntosh A, Pontius J (2016) Science and the global environment: case studies for integrating science and the global environment, 1st edn. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Ruxton GD, Colegrave N (2016) Experimental design for the life sciences, 4th edn. Oxford University Press, Oxford, NYGoogle Scholar
  21. 21.
    Vellend M (2016) The theory of ecological communities. Princeton University Press, PrincetonCrossRefGoogle Scholar
  22. 22.
    Magnusson WE, Mourão G, Costa F (2015) Statistics without math, 2nd edn. Editora Planta, LondrinaGoogle Scholar
  23. 23.
    Arlidge SM, Thanukos A, Bean JR (2017) Using the understanding science flowchart to illustrate and bring students’ science stories to life. Bull Ecol Soc Am 98:211–226CrossRefGoogle Scholar
  24. 24.
    Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, Carmel Y, Coomes DA, Coulson T, Emmerson MC, Hails RS, Hays GC, Hodgson DJ, Hutchings MJ, Johnson D, Jones JPG, Keeling MJ, Kokko H, Kunin WE, Lambin X, Lewis OT, Malhi Y, Mieszkowska N, Milner-Gulland EJ, Norris K, Phillimore AB, Purves DW, Reid JM, Reuman DC, Thompson K, Travis JMJ, Turnbull LA, Wardle DA, Wiegand T (2013) Identification of 100 fundamental ecological questions. J Ecol 101:58–67CrossRefGoogle Scholar
  25. 25.
    Pickett ST, Kolasa J, Jones CG (2007) Ecological understanding: the nature of theory and the theory of nature, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  26. 26.
    Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50CrossRefGoogle Scholar
  27. 27.
    Dawson W, Moser D, Mvan K, Kreft H, Pergl J, Pyšek P, Weigelt P, Winter M, Lenzner B, Blackburn TM, Dyer EE, Cassey P, Scrivens SL, Economo EP, Guénard B, Capinha C, Seebens H, García-Díaz P, Nentwig W, García-Berthou E, Casal C, Mandrak NE, Fuller P, Meyer C, Essl F (2017) Global hotspots and correlates of alien species richness across taxonomic groups. Nat Ecol Evol 1:0186CrossRefGoogle Scholar
  28. 28.
    Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ, Smith DW, Wallach AD, Wirsing AJ (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484CrossRefGoogle Scholar
  29. 29.
    Goldenberg SU, Nagelkerken I, Ferreira CM, Ullah H, Connell SD (2017) Boosted food web productivity through ocean acidification collapses under warming. Glob Change Biol 23:4177–4184CrossRefGoogle Scholar
  30. 30.
    Reed J, Vianen JV, Barlow J, Sunderland T (2017) Have integrated landscape approaches reconciled societal and environmental issues in the tropics? Land Use Policy 63:481–492CrossRefGoogle Scholar
  31. 31.
    Xu W, Xiao Y, Zhang J, Yang W, Zhang L, Hull V, Wang Z, Zheng H, Liu J, Polasky S, Jiang L, Xiao Y, Shi X, Rao E, Lu F, Wang X, Daily GC, Ouyang Z (2017) Strengthening protected areas for biodiversity and ecosystem services in China. Proc Natl Acad Sci U S A 114:1601–1606CrossRefGoogle Scholar
  32. 32.
    Altieri MA, Nicholls CI (2017) The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim Change 140:33–45CrossRefGoogle Scholar
  33. 33.
    Niggli U, Fliessbach A, Hepperly P, Scialabba N (2009) Low greenhouse gas agriculture: mitigation and adaptation potential of sustainable farming systems. FAO - Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  34. 34.
    Blanchard JL, Watson RA, Fulton EA, Cottrell RS, Nash KL, Bryndum-Buchholz A, Büchner M, Carozza DA, Cheung WWL, Elliott J, Davidson LNK, Dulvy NK, Dunne JP, Eddy TD, Galbraith E, Lotze HK, Maury O, Müller C, Tittensor DP, Jennings S (2017) Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat Ecol Evol 1:1240–1249CrossRefGoogle Scholar
  35. 35.
    Chaffin BC, Garmestani AS, Angeler DG, Herrmann DL, Stow CA, Nyström M, Sendzimir J, Hopton ME, Kolasa J, Allen CR (2016) Biological invasions, ecological resilience and adaptive governance. J Environ Manag 183:399–407CrossRefGoogle Scholar
  36. 36.
    Saslis-Lagoudakis CH, Savolainen V, Williamson EM, Forest F, Wagstaff SJ, Baral SR, Watson MF, Pendry CA, Hawkins JA (2012) Phylogenies reveal predictive power of traditional medicine in bioprospecting. Proc Natl Acad Sci U S A 109:15835–15840CrossRefGoogle Scholar
  37. 37.
    Saslis-Lagoudakis CH, Hawkins JA, Greenhill SJ, Pendry CA, Watson MF, Tuladhar-Douglas W, Baral SR, Savolainen V (2014) The evolution of traditional knowledge: environment shapes medicinal plant use in Nepal. Proc R Soc B 281:20132768CrossRefGoogle Scholar
  38. 38.
    Lindenmayer DB, Sato C (2018) Hidden collapse is driven by fire and logging in a socioecological forest ecosystem. Proc Natl Acad Sci U S A 115:5181–5186CrossRefGoogle Scholar
  39. 39.
    Goodness J, Andersson E, Anderson PML, Elmqvist T (2016) Exploring the links between functional traits and cultural ecosystem services to enhance urban ecosystem management. Ecol Indic 70:597–605CrossRefGoogle Scholar
  40. 40.
    Solar RRC, Barlow J, Ferreira J, Berenguer E, Lees AC, Thomson JR, Louzada J, Maués M, Moura NG, Oliveira VHF, Chaul JCM, Schoereder JH, Vieira ICG, MacNally R, Gardner TA (2015) How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol Lett 18:1108–1118CrossRefGoogle Scholar
  41. 41.
    Ethnobiology Working Group (2003) Intellectual imperatives in ethnobiology. Missouri Botanical Garden Press, St. Louis, MOGoogle Scholar
  42. 42.
    Stepp JR (2005) Advances in ethnobiological field methods. Field Method 17:211–218CrossRefGoogle Scholar
  43. 43.
    Albuquerque UP, Ferreira Júnior WS (2017) What do we study in evolutionary ethnobiology? Defining the theoretical basis for a research program. Evol Biol 44:206–215CrossRefGoogle Scholar
  44. 44.
    Saslis-Lagoudakis CH, Clarke AC (2013) Ethnobiology: the missing link in ecology and evolution. Trends Ecol Evol 28:67–68CrossRefGoogle Scholar
  45. 45.
    Albuquerque UP (2013) How to improve the quality of scientific publications in ethnobiology. Ethnobiol Cons 2:1–5Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Thiago Gonçalves-Souza
    • 1
    Email author
  • Diogo B. Provete
    • 2
  • Michel V. Garey
    • 3
  • Fernando R. da Silva
    • 4
  • Ulysses Paulino Albuquerque
    • 5
  1. 1.Laboratório de Ecologia Filogenética e Funcional (ECOFFUN), Departamento de BiologiaUniversidade Federal Rural de PernambucoRecifeBrazil
  2. 2.Laboratório de Síntese em Biodiversidade, Setor de Ecologia, Instituto de BiociênciasUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil
  3. 3.Laboratório de Ecologia de Metacomunidades, Instituto Latino-Americano de Ciências da Vida e da NaturezaUniversidade Federal da Integração Latino-AmericanaFoz do IguaçuBrazil
  4. 4.Laboratório de Ecologia Teórica: Integrando Tempo, Biologia e Espaço (LET.IT.BE), Departamento de Ciências AmbientaisUniversidade Federal de São CarlosSorocabaBrazil
  5. 5.Laboratório de Ecologia e Evolução de Sistemas Socioecológicos (LEA), Departamento de Botânica, Centro de BiociênciasUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations