Advertisement

Noninvasive Sampling Techniques for Vertebrate Fauna

  • Leonardo da Silva Chaves
  • Christini Barbosa Caselli
  • Rafael de Albuquerque Carvalho
  • Rômulo Romeu Nóbrega Alves
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Understanding the current threats to biodiversity and how human actions have contributed to it is fundamental. In order to improve our knowledge on this subject, technical expertise is demanded from researchers involved in animal’s diversity studies. Because faunal surveys and monitoring may require a great logistical effort and investments of time and resources, it is important to know all available sampling techniques and how to use them to ensure and optimize the collection of reliable data. In this chapter, we present a brief summary on the main available noninvasive techniques for vertebrate sampling and list other important sources of information for each approach. Besides decreasing the interference in animals’ populations, the noninvasive sampling techniques make it possible to obtain reliable data with reduced investments of time and resources.

Key words

Trap Survey Animal Ethnozoology Vestiges 

References

  1. 1.
    Lyra-Jorge MC, Ciocheti G, Pivello VR, Meirelles ST (2008) Comparing methods for sampling large- and medium-sized mammals: camera traps and track plots. Eur J Wildl Res 54(4):739–744.  https://doi.org/10.1007/s10344-008-0205-8CrossRefGoogle Scholar
  2. 2.
    Garden JG, McAlpine CA, Possingham HP, Jones DN (2007) Using multiple survey methods to detect terrestrial reptiles and mammals: what are the most successful and cost-efficient combinations? Wildl Res 34(3):218–227.  https://doi.org/10.1071/WR06111CrossRefGoogle Scholar
  3. 3.
    Tobler MW, Carrillo-Percastegui SE, Leite Pitman R, Mares R, Powell G (2008) An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Anim Conserv 11(3):169–178.  https://doi.org/10.1111/j.1469-1795.2008.00169.xCrossRefGoogle Scholar
  4. 4.
    Boivin NL, Zeder MA, Fuller DQ et al (2016) Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc Natl Acad Sci U S A 113(23):6388–6396.  https://doi.org/10.1073/pnas.1525200113CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kelt DA, Van Vuren DH, Hafner MS, Danielson BJ, Kelly MJ (2007) Threat of hantavirus pulmonary syndrome to field biologists working with small mammals. Emerg Infect Dis 13(9):1285–1287.  https://doi.org/10.3201/eid1309.070445CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mellor DJ, Beausoleil NJ, Stafford KJ (2004) Marking amphibians, reptiles, and marine mammals: animal welfare, practicalities, and public perceptions in New Zealand, 1st edn. Department od Conservation, WellingtonGoogle Scholar
  7. 7.
    MacKay P, Zielinski WJ, Long RA, Ray JC (2012) Noninvasive research and carnivore conservation. In: Long RA, MacKay P, Ray J, Zielinski W (eds) Noninvasive survey methods for carnivores, 1st edn. Island Press, Washington, DC, p 400Google Scholar
  8. 8.
    Gompper ME, Kays RW, Ray JC, Reviewed P (2006) A comparison of noninvasive techniques to survey carnivore communities in northeastern North America. Wildl Soc Bull 34(4):1142–1151 http://www.bioone.org/doi/abs/10.2193/0091-7648(2006)34[1142:ACONTT]2.0.CO;2CrossRefGoogle Scholar
  9. 9.
    Silveira L, Jácomo ATA, Diniz-Filho JAF (2003) Camera trap, line transect census and track surveys: a comparative evaluation. Biol Conserv 114(3):351–355.  https://doi.org/10.1016/S0006-3207(03)00063-6CrossRefGoogle Scholar
  10. 10.
    Brandes ST (2008) Automated sound recording and analysis techniques for bird surveys and conservation. Bird Conserv Int 18(S1).  https://doi.org/10.1017/S0959270908000415
  11. 11.
    Bradbury JW, Vehrencamp SL (2011) Principles of animal communication, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  12. 12.
    Haselmayer J, Quinn JS (2000). A comparison of point counts and sound recording as bird survey methods in Amazonian Southeast Peru. 102.  https://doi.org/10.1650/0010-5422(2000)102[0887:ACOPCA]2.0.CO;2CrossRefGoogle Scholar
  13. 13.
    Hampton I (1992) The role of acoustic surveys in the assessment of pelagic fish resources on the South African continental shelf. S Afr J Mar Sci 12(1):1031–1050.  https://doi.org/10.2989/02577619209504760CrossRefGoogle Scholar
  14. 14.
    Crouch WB III, Paton PWC (2002) Assessing the use of call surveys to monitor breeding anurans in Rhode Island. J Herpetol 36(2):185.  https://doi.org/10.2307/1565990CrossRefGoogle Scholar
  15. 15.
    Acevedo MA, Villanueva-Rivera LJ (2006) Using automated digital recording systems as effective tools for the monitoring of birds and amphibians. Wildl Soc Bull 34(1):211–214.  https://doi.org/10.2193/0091-7648(2006)34[211:UADRSA]2.0.CO;2CrossRefGoogle Scholar
  16. 16.
    Aldrich B, Molleson L, Nekaris KA (2008). Vocalizations as a conservation tool: an auditory survey of the Andean Titi Monkey Callicebus Oenanthe Thomas, 1924 (Mammalia: Primates: Pitheciidae) at Tarangue, Northern Peru. Contrib Zool 77(1):1-6.Google Scholar
  17. 17.
    Sueur J, Pavoine S, Hamerlynck O, Duvail S (2008) Rapid acoustic survey for biodiversity appraisal. PLoS One 3(12):e4065.  https://doi.org/10.1371/journal.pone.0004065CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Celis-Murillo A, Deppe JL, Allen MF (2009) Using soundscape recordings to estimate bird species abundance, richness, and composition. J Field Ornithol 80(1):64–78.  https://doi.org/10.1111/j.1557-9263.2009.00206.xCrossRefGoogle Scholar
  19. 19.
    Obrist MK, Pavan G, Sueur J, Riede K, Llusia D, Márquez R (2010). Bioacoustics approaches in biodiversity inventories. Abc Taxa 8:68-99.Google Scholar
  20. 20.
    Gestich CC, Caselli CB, Nagy-Reis MB, Setz EZF, da Cunha RGT (2017) Estimating primate population densities: the systematic use of playbacks along transects in population surveys. Am J Primatol 79(2):e22586.  https://doi.org/10.1002/ajp.22586CrossRefGoogle Scholar
  21. 21.
    Bridges AS, Dorcas ME (2000) Temporal variation in anuran calling behavior: implications for surveys and monitoring programs. Copeia 2000(2):587–592.  https://doi.org/10.1643/0045-8511(2000)000[0587:TVIACB]2.0.CO;2CrossRefGoogle Scholar
  22. 22.
    Rempel RS, Hobson K, Holborn G, Van Wilgenburg S, Elliott J (2005) Bioacoustic monitoring of Forest songbirds: interpreter variability and effects of configuration and digital processing methods in the laboratory. J Field Ornithol 76.  https://doi.org/10.1648/0273-8570-76.1.1CrossRefGoogle Scholar
  23. 23.
    Furnas BJ, Callas RL (2015) Using automated recorders and occupancy models to monitor common forest birds across a large geographic region. J Wildl Manag 79(2):325–337.  https://doi.org/10.1002/jwmg.821CrossRefGoogle Scholar
  24. 24.
    Celis-Murillo A, Deppe JL, Ward MP (2012) Effectiveness and utility of acoustic recordings for surveying tropical birds. J Field Ornithol 83(2):166–179.  https://doi.org/10.1111/j.1557-9263.2012.00366.xCrossRefGoogle Scholar
  25. 25.
    Walters CL, Freeman R, Collen A et al (2012) A continental-scale tool for acoustic identification of European bats. Minderman J, ed. J Appl Ecol 49(5):1064–1074.  https://doi.org/10.1111/j.1365-2664.2012.02182.xCrossRefGoogle Scholar
  26. 26.
    Aide TM, Corrada-Bravo C, Campos-Cerqueira M, Milan C, Vega G, Alvarez R (2013) Real-time bioacoustics monitoring and automated species identification. PeerJ 1:e103.  https://doi.org/10.7717/peerj.103CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Parsons S, Jones G (2000) Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks. J Exp Biol 203(Pt 17):2641–2656.  https://doi.org/10.1007/s00114-005-0622-4CrossRefPubMedGoogle Scholar
  28. 28.
    Stowell D, Plumbley MD (2014) Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning. PeerJ 2:e488.  https://doi.org/10.7717/peerj.488CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Obrist MK, Boesch R, Flückiger PF (2004) Variability in echolocation call design of 26 Swiss bat species: consequences, limits and options for automated field identification with a synergetic pattern recognition approach. Mammalia 68(4).  https://doi.org/10.1515/mamm.2004.030
  30. 30.
    Oswald JN, Barlow J, Norris TF (2003) Acoustic identification of nine delphinid species in the eastern tropical Pacific Ocean. Mar Mamm Sci 19(1):20–37.  https://doi.org/10.1111/j.1748-7692.2003.tb01090.xCrossRefGoogle Scholar
  31. 31.
    Marques TA, Thomas L, Martin SW et al (2013) Estimating animal population density using passive acoustics. Biol Rev 88(2):287–309.  https://doi.org/10.1111/brv.12001CrossRefPubMedGoogle Scholar
  32. 32.
    Mielke A, Zuberbühler K (2013) A method for automated individual, species and call type recognition in free-ranging animals. Anim Behav 86.  https://doi.org/10.1016/j.anbehav.2013.04.017CrossRefGoogle Scholar
  33. 33.
    Sueur J, Aubin T, Simonis C (2008) Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics 18.  https://doi.org/10.1080/09524622.2008.9753600CrossRefGoogle Scholar
  34. 34.
    Araya-Salas M, Smith-Vidaurre G (2017) warbleR: an R package to streamline analysis of animal acoustic signals. Golding N, ed. Methods Ecol Evol 8(2):184–191.  https://doi.org/10.1111/2041-210X.12624CrossRefGoogle Scholar
  35. 35.
    R Core Team (2017). R: a language and environment for statistical computing. http://www.r-project.org/
  36. 36.
    Simmonds EJ, Williamson NJ, Gerlotto F, Aglen A (1992) Acoustic survey design and analysis procedure: a comprehensive review of current practice. Internat. Council for the Exploration of the SeaGoogle Scholar
  37. 37.
    Blumstein DT, Mennill DJ, Clemins P et al (2011) Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus. J Appl Ecol 48(3):758–767.  https://doi.org/10.1111/j.1365-2664.2011.01993.xCrossRefGoogle Scholar
  38. 38.
    Conway CJ, Gibbs JP (2005) Effectiveness of call-broadcast surveys for monitoring marsh birds. Auk 122(1):26–35CrossRefGoogle Scholar
  39. 39.
    Dacier A, de Luna AG, Fernandez-Duque E, Di Fiore A (2011) Estimating population density of Amazonian Titi Monkeys (Callicebus discolor) via playback point counts. Biotropica 43(2):135–140.  https://doi.org/10.1111/j.1744-7429.2010.00749.xCrossRefGoogle Scholar
  40. 40.
    Kierulff MCM, Rylands AB (2003) Census and distribution of the golden lion tamarin (Leontopithecus rosalia). Am J Primatol 59(1):29–44.  https://doi.org/10.1002/ajp.10064CrossRefPubMedGoogle Scholar
  41. 41.
    Nagy-Reis MB, Estevo CA, Setz EZF, Ribeiro MC, Chiarello AG, Nichols JD (2017) Relative importance of anthropogenic landscape characteristics for neotropical frugivores at multiple scales. Anim Conserv 20(6):520–531.  https://doi.org/10.1111/acv.12346CrossRefGoogle Scholar
  42. 42.
    MacKenzie D, Nichols J, Royle J, Pollock K, Bailey L, Hines J (2005) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence, 1st edn. Academic Press, New YorkGoogle Scholar
  43. 43.
    Zuberogoitia I, Zabala J, Martínez JA (2006) Evaluation of sign surveys and trappability of American mink: management consequences. Folia Zool 55(3):257–263Google Scholar
  44. 44.
    Birks J, Messenger J, Braithwaite T, Davison A, Brookes R, Strachan C (2005) Are scat surveys a reliable method for assessing distribution and population status of pine martens? In: Harrison DJ, Fuller AK, Proulx G (eds) Martens and fishers (Martes) in human-altered environments, 1st edn. Springer, Boston, MA, pp 235–252.  https://doi.org/10.1007/0-387-22691-5_12CrossRefGoogle Scholar
  45. 45.
    Wilson GJ, Delahay RJ (2001) A review of methods to estimate the abundance of terrestrial carnivores using field signs and observation. Wildl Res 28(2):151–164.  https://doi.org/10.1071/WR00033CrossRefGoogle Scholar
  46. 46.
    Harrington LA, Harrington AL, Hughes J, Stirling D, Macdonald DW (2010) The accuracy of scat identification in distribution surveys: American mink, Neovison vison, in the northern highlands of Scotland. Eur J Wildl Res 56(3):377–384.  https://doi.org/10.1007/s10344-009-0328-6CrossRefGoogle Scholar
  47. 47.
    Prugh LR, Ritland CE (2005) Molecular testing of observer identification of carnivore feces in the field. Wildl Soc Bull 33(1):189–194.  https://doi.org/10.2193/0091-7648(2005)33[189:MTOOIO]2.0.CO;2CrossRefGoogle Scholar
  48. 48.
    Davison A, Birks JDS, Brookes RC, Braithwaite TC, Messenger JE (2002) On the origin of faeces: morphological versus molecular methods for surveying rare carnivores from their scats. J Zool 257(2):141–143.  https://doi.org/10.1017/S0952836902000730CrossRefGoogle Scholar
  49. 49.
    Zuercher G, Gipson P, Stewart G (2003) Identification of carnivore feces by local peoples and molecular analyses. Wildl Soc Bull 31:961–970Google Scholar
  50. 50.
    Lucherini M, Reppucci JI, Vidal EL (2009) A comparison of three methods to estimate variation in the relative abundance of mountain vizcachas (Lagidium viscacia) in the High Andes ecosystems. Mastozoología Neotrop 16(1):223–228 http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-93832009000100020&lng=es&nrm=isoGoogle Scholar
  51. 51.
    Stander PE, Ghau, Tsisaba D, Ui (1997) Tracking and the interpretation of spoor: a scientifically sound method in ecology. J Zool 242(2):329–341CrossRefGoogle Scholar
  52. 52.
    Van Dyke FG, Brocke RH, Shaw HG (2013) Use of road track counts as indices of mountain lion presence. J Wildl Manag 50(1):102–109CrossRefGoogle Scholar
  53. 53.
    Harmsen BJ, Foster RJ, Silver S, Ostro L, Doncaster CP (2010) Differential use of trails by forest mammals and the implications for camera-trap studies: a case study from Belize. Biotropica 42(1):126–133.  https://doi.org/10.1111/j.1744-7429.2009.00544.xCrossRefGoogle Scholar
  54. 54.
    Glennon MJ, Porter WF, Demers CL (2002) An alternative field technique for estimating diversity of small-mammal populations. J Mammal 83(3):734–742.  https://doi.org/10.1644/1545-1542(2002)083<0734:AAFTFE>2.0.CO;2CrossRefGoogle Scholar
  55. 55.
    Grigione M, Burman P, Bleich V, Pierce B (1999) Identifying individual mountain lions Felis concolor by their tracks: refinement of an innovative technique. Biol Conserv 88:25–32 http://www.sciencedirect.com/science/article/pii/S0006320798000962CrossRefGoogle Scholar
  56. 56.
    Lima Borges PA, Tomas WM (2004) Guia de Rastros e Outros Vestígios de Mamíferos Do Pantanal, 1st edn. EMBRAPA Pantanal, CorumbGoogle Scholar
  57. 57.
    O’Connell AF, Nichols JD, Karanth KU (2011) Camera traps in animal ecology. Springer, Japan.  https://doi.org/10.1007/978-4-431-99495-4 Hardcover ISBNCrossRefGoogle Scholar
  58. 58.
    Ray JC, Zielinski WJ (2012) Track stations. In: Long RA, MacKay P, Zielinski WJ, Ray JC (eds) Noninvasive survey methods for carnivores, 1st edn. Island Press, Washington, DC, pp 75–109Google Scholar
  59. 59.
    Taylor CA, Raphael MG (1988) Identification of mammal tracks from Sooted Track Stations in the Pacific northwest. Calif Fish Game 74(1):4–15Google Scholar
  60. 60.
    Zielinski WJ, Kucera TE (1995). American marten, fisher, lynx, and wolverine: survey methods for their detection. Gen. Tech. Rep. PSW-GTR-157. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture; 163 p. http://www.fs.fed.us/psw/publications/documents/gtr-157/Chapter_1/Chapter_1.html
  61. 61.
    Reed SE (2011) Non-invasive methods to assess co-occurrence of mammalian carnivores. Southwest Nat 56(2):231–240.  https://doi.org/10.1894/F13-JKF-14.1CrossRefGoogle Scholar
  62. 62.
    Palma ART, Gurgel-Gonçalves R (2007) Morphometric identification of small mammal footprints from ink tracking tunnels in the Brazilian Cerrado. Rev Bras Zool 24(2):333–343.  https://doi.org/10.1590/S0101-81752007000200011CrossRefGoogle Scholar
  63. 63.
    Van Apeldoorn R, Daem ME, Hawley K et al (1993) Footprints of small mammals. A field method of sampling data for different species. Mammalia 57(3):407–422.  https://doi.org/10.1515/mamm.1993.57.3.407CrossRefGoogle Scholar
  64. 64.
    Weaver JL, Wood P, Paetkau D, Laack LL (2005) Use of scented hair snares to detect ocelots. Wildl Soc Bull 33(4):1384–1391.  https://doi.org/10.2193/0091-7648(2005)33[1384:UOSHST]2.0.CO;2CrossRefGoogle Scholar
  65. 65.
    Castro-Arellano I, Madrid-Luna C, Lacher TE, León-Paniagua L (2008) Hair-trap efficacy for detecting mammalian carnivores in the tropics. J Wildl Manag 72(6):1405–1412.  https://doi.org/10.2193/2007-476CrossRefGoogle Scholar
  66. 66.
    Bremner-Harrison S, Harrison SWR, Cypher BL, Murdoch JD, Maldonado J, Darden SK (2006) Development of a single-sampling noninvasive hair snare. Wildl Soc Bull 36(2):456–461CrossRefGoogle Scholar
  67. 67.
    Harris RL, Nicol SC (2010) The effectiveness of hair traps for surveying mammals: results of a study in sandstone caves in the Tasmanian southern midlands. Aust Mammal 32(1):62–66.  https://doi.org/10.1071/AM09019CrossRefGoogle Scholar
  68. 68.
    Reiger I (1979) Scent rubbing in carnivores. Carnivore 2:17–25Google Scholar
  69. 69.
    Lynch ÁB, Brown MJF, Rochford JM (2006) Fur snagging as a method of evaluating the presence and abundance of a small carnivore, the pine marten (Martes martes). J Zool 270(2):330–339.  https://doi.org/10.1111/j.1469-7998.2006.00143.xCrossRefGoogle Scholar
  70. 70.
    Finnegan L, Hamilton G, Perol J, Rochford J (2007) The use of hair tubes as an indirect method for monitoring red and grey squirrel populations. Biol Environ Proc R Irish Acad 107B(2):55–60 http://www.jstor.org/stable/20728623CrossRefGoogle Scholar
  71. 71.
    Quadros J, Monteiro-Filho ELD (2006) Coleta e preparação de pêlos de mamíferos para identificação em microscopia óptica. Rev Bras Zool 23(1):274–278.  https://doi.org/10.1590/S0101-81752006000100022CrossRefGoogle Scholar
  72. 72.
    Lobert B, Lumsden L, Brunner H, Triggs B (2001) An assessment of the accuracy and reliability of hair identification of south-east Australian mammals. Wildl Res 28(6):637.  https://doi.org/10.1071/WR00124CrossRefGoogle Scholar
  73. 73.
    Henry P, Henry A, Russello MA (2011) A noninvasive hair sampling technique to obtain high quality DNA from elusive small mammals. J Vis Exp (49):1–5.  https://doi.org/10.3791/2791
  74. 74.
    Reiners TE, Encarnação JA, Wolters V (2011) An optimized hair trap for non-invasive genetic studies of small cryptic mammals. Eur J Wildl Res 57(4):991–995.  https://doi.org/10.1007/s10344-011-0543-9CrossRefGoogle Scholar
  75. 75.
    Sanderson JG, Trolle M (2005) Monitoring elusive mammals. Am Sci 93:148–155CrossRefGoogle Scholar
  76. 76.
    Rovero F, Tobler M, Sanderson J (2010) Camera trapping for inventorying terrestrial vertebrates. Man F Rec Tech Protoc All Taxa Biodivers Invent Monit (6):100–128 http://www.scubla.it/images/Schede_pdf/ecologia/approfondimenti_fototrappole/06camera_trapping_inventorying_terrestrial_vertebrates.pdf
  77. 77.
    Di Cerbo AR, Biancardi CM (2013) Monitoring small and arboreal mammals by camera traps: effectiveness and applications. Acta Theriol (Warsz) 58(3):279–283.  https://doi.org/10.1007/s13364-012-0122-9CrossRefGoogle Scholar
  78. 78.
    Oliveira-Santos LGR, Tortato MA, Graipel ME (2008) Activity pattern of Atlantic Forest small arboreal mammals as revealed by camera traps. J Trop Ecol 24(5):563–567.  https://doi.org/10.1017/S0266467408005324CrossRefGoogle Scholar
  79. 79.
    Bowkett AE, Rovero F, Marshall AR (2008) The use of camera-trap data to model habitat use by antelope species in the Udzungwa Mountain forests, Tanzania. Afr J Ecol 46(4):479–487.  https://doi.org/10.1111/j.1365-2028.2007.00881.xCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Leonardo da Silva Chaves
    • 1
  • Christini Barbosa Caselli
    • 2
  • Rafael de Albuquerque Carvalho
    • 3
  • Rômulo Romeu Nóbrega Alves
    • 4
  1. 1.Department of Biology, Post-graduation Program of Ethnobiology and Nature ConservationUniversidade Federal Rural de PernambucoRecifeBrazil
  2. 2.Biology DepartmentUniversidade Federal Rural de PernambucoRecifeBrazil
  3. 3.Department of GeneticsUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  4. 4.Departamento de BiologiaUniversidade Estadual da ParaíbaCampina GrandeBrazil

Personalised recommendations