The Spatiotemporal Scale of Ethnobiology: A Conceptual Contribution in the Application of Meta-Analysis and the Development of the Macro-Ethnobiological Approach

  • Tania Vianney Gutiérrez-Santillán
  • David Valenzuela-Galván
  • Ulysses Paulino Albuquerque
  • Francisco Reyes-Zepeda
  • Leonardo Uriel Arellano-Méndez
  • Arturo Mora-Olivo
  • Luis-Bernardo Vázquez
Part of the Springer Protocols Handbooks book series (SPH)


From local level ethnobiological research, patterns have been identified in the relationships between human groups and natural resources. Although these patterns are consistent, they are unknown at a wider spatiotemporal scale, as well as the variables and the causal mechanisms that originate them. One of the factors that could be influencing the lack of study of social-ecological patterns is the ignorance of new macro-scale analysis perspectives; as well as the absence of a semantic, conceptual, and analytical framework. For this reason, it is proposed to establish a semantic-conceptual framework of areas in which ethnobiology can be developed at a macro-scale, which is the application of meta-analysis and the development of macro-ethnobiology. Both perspectives develop larger-scale research (space-time) and are based on the analysis of local information (primary information), identify variables, use statistical analysis, and determine processes and patterns by analyzing data heterogeneity. However, both disciplines have different goals, as well as the use of analysis tools. For the adequate development of any of these two approaches in ethnobiology, it is essential to conceptually know the discipline, select the primary information under quality criteria, fulfill with the theoretical assumptions of statistical tests, make an adequate interpretation of data variation and have the support of experts. It is not about proposing new disciplines, but broadening the study approach of ethnobiology, revaluing primary information, analyzing variables together and identifying social-ecological processes and patterns. We consider that on a broader scale, the analysis is workable for the understanding of social-ecological relationships.

Key words

Ethnobiology Meta-analysis Macro-ecology Social-ecological relationships 


  1. 1.
    Wolverton S (2013) Ethnobiology 5: interdisciplinarity in an era of rapid environmental change. EBL 4:21–25CrossRefGoogle Scholar
  2. 2.
    Albuquerque UP, Ferreira-Júnior W (2017) What do we study in evolutionary ethnobiology? Defining the theoretical basis for a research program. Evol Biol 44(2):206–215CrossRefGoogle Scholar
  3. 3.
    Berlin B (1973) Folk systematics in relation to biological classification and nomenclature. Annu Rev Ecol Evol Syst 4:259–271CrossRefGoogle Scholar
  4. 4.
    Berlin B, Breedlove DE, Raven PH (1973) General principles of classification and nomenclature in folk biology. Am Anthropol 75:214–242CrossRefGoogle Scholar
  5. 5.
    Berlin B, Boster JS (1981) The perceptual bases of ethnobiological classification: evidence from Aguaruna Jívaro ornithology. J Ethnobiol 1(1):95–108Google Scholar
  6. 6.
    Brown CH (1985) Mode of subsistence and folk biological taxonomy. Curr Anthropol 26(1):43–64CrossRefGoogle Scholar
  7. 7.
    Hunn E (1982) The utilitarian factor in folk biological classification. Am Anthropol 84(4):830–847CrossRefGoogle Scholar
  8. 8.
    Caballero J, Casas A, Cortes L et al (1998) Patrones en el conocimiento, uso y manejo de plantas en pueblos indígenas de México. Estud Ataca 16:181–195CrossRefGoogle Scholar
  9. 9.
    Casas A, Parra F, Blancas J (2015) Evolution of humans and by humans. In: Albuquerque UP, Medeiros PM, Casas A (eds) Evolutionary ethnobiology. Springer, New York, pp 21–36CrossRefGoogle Scholar
  10. 10.
    Alves R (2012) Relationships between faunal and people and the role of ethnozoology in animal conservation. Ethnobiol Conserv 1(2):1–69Google Scholar
  11. 11.
    Boa E (2004) Non-wood forest product 17: wild edible fungi. A global overview of their use and importance to people. Food and Agriculture Organization of the United Nations, Rome, p 148Google Scholar
  12. 12.
    Albuquerque UP, Medeiros P (2012) Systematic reviews and meta-analysis applied to ethnobiological research. Ethnobiol Conserv 1(6):1–8Google Scholar
  13. 13.
    Campos J, Sobral A, Silva J et al (2016) Insularity and citation behavior of scientific articles in young fields: the case of ethnobiology. Scientometrics 109(2):1037–1055CrossRefGoogle Scholar
  14. 14.
    Molares S, Ladio A (2012) The usefulness of edible and medicinal fabaceae in Argentine and Chilean Patagonia: environmental availability and other sources of supply. Evid Based Complement Altern Med 1:1–12CrossRefGoogle Scholar
  15. 15.
    Stepp JR, Castaneda H, Cervone S (2005) Mountains and biocultural diversity. Mt Res Dev 25(3):223–227CrossRefGoogle Scholar
  16. 16.
    Loh J, Harmon D (2005) A global index of biocultural diversity. Ecol Indic 5:321–241CrossRefGoogle Scholar
  17. 17.
    Harmon D, Loh J (2010) The index of linguistic diversity: a new quantitative measure of trends in the status of the world’s languages. LD&C 4:97–151Google Scholar
  18. 18.
    Gavin MC, Stepp JR (2014) Rapoport’s rule revisited: geographical distributions of human languages. PLoS One 9(9):e107623PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gorenflo LJ, Romaine S, Mittermeier R et al (2012) Co-occurrence of linguistic and biological diversity in biodiversity hotspots and high biodiversity wilderness areas. Proc Natl Acad Sci 109(21):8032–8037PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Moreno-Estrada A, Gignoux CR, Fernández-López JC et al (2014) Human genetics. The genetics of Mexico recapitulates Native American substructure and affects biomedical traits. Science 344(6189):1280–1285PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mace R, Holden CJ (2005) A phylogenetic approach to cultural evolution. Trends Ecol Evol 20(3):116–121PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Burger JR, Allen CD, Brown JH et al (2012) The macroecology of sustainability. PLoS Biol 10(6):e1001345PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Vázquez L-B, Gaston KJ (2006) People and mammals in Mexico: conservation conflicts at a national scale. Biodivers Conserv 15(8):2397–2414CrossRefGoogle Scholar
  24. 24.
    Vellend M, Verheyen K, Flinn KM et al (2007) Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. J Ecol 95(3):565–573CrossRefGoogle Scholar
  25. 25.
    Cardinale BJ, Duffy JE, Gonzalez A et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Santini L, González-Suárez M, Rondinini C et al (2017) Shifting baseline in macroecology? Unravelling the influence of human impact on mammalian body mass. Divers Distribut 23(6):640–649CrossRefGoogle Scholar
  27. 27.
    Tao T, Abades S, Teng S et al (2017) Macroecological factors shape local-scale spatial patterns in agriculturalist settlements. Proc R Soc 284(1866):20172003CrossRefGoogle Scholar
  28. 28.
    Brown JH, Burnside WR, Davison AD et al (2011) Energetic limits to economic growth. Bioscience 61(1):19–26CrossRefGoogle Scholar
  29. 29.
    Brown JH, Burger JR, Burnside WR et al (2014) Macroecology meets macroeconomics: resouce scarcity and global sustainability. Ecol Eng 65:24–32PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Burnside WR, Brown JH, Burger O et al (2012) Human macroecology: linking pattern and process in big-picture human ecology. Biol Rev 87(1):194–208PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Mace GM (2012) The limits to sustainability science: ecological constraints or endless innovation? PLoS Biol 10(6):1–2CrossRefGoogle Scholar
  32. 32.
    Ehrlich PR, Ehrlich AH (2013) Can a collapse of global civilization be avoided? Proc R Soc 280:20122845CrossRefGoogle Scholar
  33. 33.
    Albuquerque UP, Hanazaki N (2009) Five problems in current ethnobotanical research and some suggestions for strengthening them. Hum Ecol 37:653–661CrossRefGoogle Scholar
  34. 34.
    Saslis-Lagoudakis CH, Clarke AC (2013) Ethnobiology: the missing link in ecology and evolution. Trends Ecol Evol 28(2):67–68CrossRefGoogle Scholar
  35. 35.
    Albuquerque UP, Ferreira-Júnior WS, Santoro FR et al (2015) Niche construction theory and ethnobiology. In: Albuquerque UP, Medeiros PM, Casas A (eds) Evol Ethnobiol. Springer, New York, pp 73–87CrossRefGoogle Scholar
  36. 36.
    Albuquerque UP, Santos-Gonçalves PH, Ferreira-Júnior W et al (2018) Humans as niche constructors: revisiting the concept of chronic anthropogenic disturbances in ecology. PECON 16(1):1–11Google Scholar
  37. 37.
    Torres-Avilez W, Medeiros P, Albuquerque UP (2016) Effect of gender on the knowledge of medicinal plants: systematic review and meta-analysis. Evid Based Complement Altern Med 2016:6592363CrossRefGoogle Scholar
  38. 38.
    Higgins JPT, Green S (2009) Cochrane handbook for systematic reviews of interventions. Ver. 5.0.2. Wiley, Hoboken, NJGoogle Scholar
  39. 39.
    Lortie CJ (2014) Formalized synthesis opportunities for ecology: systematic reviews and meta-analyses. Oikos 123(8):897–902CrossRefGoogle Scholar
  40. 40.
    Egger M, Smith GD (1997) Meta-analysis: potentials and promise. BMJ 315:1371–1374PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Stewart G (2009) Meta-analysis in applied ecology. Biol Lett 6:78–81PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Arnqvist G, Wooster D (1995) Meta-analysis: synthesizing research findings in ecology and evolution. Trends Ecol Evol 10(6):236–240PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Gates S (2002) Review of methodology of quantitative reviews using meta-analysis in ecology. J Anim Ecol 71:547–557CrossRefGoogle Scholar
  44. 44.
    Kueffer C, Niinemets U, Drenovsky RE et al (2011) Fame, glory and neglect in meta-analyses. Trends Ecol Evol 26(10):493–494PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Koricheva J, Gurevitch J (2014) Uses and misuses of meta-analysis in plant ecology. J Ecol 102:828–844CrossRefGoogle Scholar
  46. 46.
    ArchMiller AA, Bauer EF, Koch RE et al (2015) Formalizing the definition of meta-analysis in molecular ecology. Mol Ecol 24(16):4042–4051PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Peterman RM (1995) Statistical power of methods of meta-analysis. Trends Ecol Evol 10(11):460PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Higgins JPT, Thompson SG, Deeks JJ et al (2009) Measuring inconsistency in meta-analyses. BMJ 327:557–560CrossRefGoogle Scholar
  49. 49.
    Beninde J, Veith M, Hochkirch A (2015) Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol Lett 18(6):581–592PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Zar JH (2010) Biostatistical analysis, 5th edn. Pearson Prentice Hall, Upper Saddle River, p 944Google Scholar
  51. 51.
    Gaston KJ (2004) Macroecology and people. Basic Appl Ecol 5(4):303–307CrossRefGoogle Scholar
  52. 52.
    Gaston KJ (2005) Biodiversity and extinction: species and people. Prog Phys Geogr 29(2):239–247CrossRefGoogle Scholar
  53. 53.
    Gaston KJ (2006) Biodiversity and extinction: macroecological patterns and people. Prog Phys Geogr 30(2):258–269CrossRefGoogle Scholar
  54. 54.
    Gaston KJ, Evans KL (2004) Birds and people in Europe. Proc R Soc 271(1548):1649–1655CrossRefGoogle Scholar
  55. 55.
    Gavin MC, McCarter J, Mead A et al (2015) Defining biocultural approaches to conservation. Trends Ecol Evol 30(3):140–145PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Brown JH (1999) Macroecology: progress and prospect. Oikos 87:3–14CrossRefGoogle Scholar
  57. 57.
    Kühn I, Böhning-Gaese K, Cramer W et al (2008) Macroecology meets global change research. Glob Ecol Biogeogr 17(1):3–4CrossRefGoogle Scholar
  58. 58.
    Keith SA, Webb TJ, Böhning-Gaese K et al (2012) What is macroecology? Biol Lett 8:904–906PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Pärtel M, Bennett JA, Zobel M (2016) Macroecology of biodiversity: disentangling local and regional effects. New Phytol 211(2):404–410PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Maldonado C, Molina CI, Zizka A et al (2015) Estimating species diversity and distribution in the era of big data: to what extent can we trust public databases? Glob Ecol Biogeogr 24:973–984PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Brown JH, Maurer BA (1989) Macroecology: the division of food and space among species on continents. Science 243(4895):1145–1150PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Brown JH (2003) Macroecología. Fondo de Cultura Económica. Distrito Federal, p 397Google Scholar
  63. 63.
    Gaston KJ, Blackburn TM (2000) Pattern and process in macroecology (eds). Blackwell Science, Malden, p 377CrossRefGoogle Scholar
  64. 64.
    Blackburn TM, Gaston K (2002) Macroecology is distinct from biogeography. Nature 418:723PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Beck J, Ballesteros-Mejia L, Buchmann CM et al (2012) What’s on the horizon for macroecology? Ecography 35:673–683CrossRefGoogle Scholar
  66. 66.
    Brown JH, Stevens GC, Kaufman DM (1996) The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Evol Syst 27(1):597–623CrossRefGoogle Scholar
  67. 67.
    Hawkins BA, Portes EE, Diniz-Filho JA (2003) Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84(6):1608–1623CrossRefGoogle Scholar
  68. 68.
    Koleff P, Soberón J, Arita HT et al (2008) Patrones de diversidad espacial en grupos selectos de especies. In: Soberón J, Halffter G, Llorente-Bousquets J (eds) Capital natural de México vol I, conocimiento de la biodiversidad. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Distrito Federal, pp 323–364Google Scholar
  69. 69.
    Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge, p 436CrossRefGoogle Scholar
  70. 70.
    Marquet PA (2009) Macroecological perspectives on communities and ecosystems. In: Levin SA (ed) The Princeton guide to ecology. Princeton University Press, Princeton, NJ, pp 386–394Google Scholar
  71. 71.
    Stephens PR, Altizer S, Smith KF et al (2016) The macroecology of infectious diseases: a new perspective on global-scale drivers of pathogen distributions and impacts. Ecol Lett 19:1159–1171PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Gaston K (1990) Patterns in geographical ranges of species. Biol Rev 65(2):105–129CrossRefGoogle Scholar
  73. 73.
    Diniz-Filho JAF, Gouveia SF, Lima-Ribeiro MS (2013) Evolutionary macroecology. Front Biogeogr 5:195–203CrossRefGoogle Scholar
  74. 74.
    Bini LM, Villalobos F, Diniz-Filho JA (2014) Explorando patrones en rasgos macroecológicos utilizando regresión secuencial de autoverctores filogenéticos. Ecosistemas 23(1):21–26CrossRefGoogle Scholar
  75. 75.
    Villalobos F, Carotenuto F, Raia P et al (2016) Phylogenetic fields through time: temporal dynamics of geographic co-occurrence and phylogenetic structure within species ranges. Phil Trans R Soc A 371(1691):20150220CrossRefGoogle Scholar
  76. 76.
    Peterson AT, Ortega-Huerta MA, Sánchez-Cordero V et al (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Peterson AT, Soberón J (2012) Species distribution modeling and ecological niche modeling: getting the concepts right. Nat Conserv 10:102–107CrossRefGoogle Scholar
  78. 78.
    Olalla-Tarraga MA, González-Suárez M, Bernardo-Madrid R et al (2017) Contrasting evidence of phylogenetic trophic niche conservatism in mammals worldwide. J Biogeogr 44:99–110CrossRefGoogle Scholar
  79. 79.
    Tucker CM, Cadotte MW, Carvalho SB et al (2016) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev 29(2):698–715CrossRefGoogle Scholar
  80. 80.
    Tittensor DP, Enquist B, Worm B (2016) A neural-metabolic theory of latitudinal biodiversity. Glob Ecol Biogeogr 25(6):630–641CrossRefGoogle Scholar
  81. 81.
    McGill BJA (2003) A test of the unified neutral theory of biodiversity. Nature 422:881–885PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Calderón-Patrón J, Moreno M, Pineda C et al (2013) Vertebrate dissimilarity, turnover and nestedness in a highly beta-diverse Region: the role of spatial grain size, dispersal ability and distance. PLoS One 8(12):e82905PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Calderón-Patrón JM, Goyenechea I, Ortiz-Pulido R et al (2016) Beta diversity in a highly heterogeneous area: disentangling species and taxonomic dissimilarity for terrestrial vertebrates. PLoS One 11(8):1–15CrossRefGoogle Scholar
  84. 84.
    Blackburn TM (2004) Method in macroecology. Basic Appl Ecol 5(5):401–412CrossRefGoogle Scholar
  85. 85.
    Rodríguez P, Villalobos F, Sánchez-Barradas A et al (2017) La macroecología en México: historia, avances y perspectivas. Rev Mex Biodivers 88:52–64CrossRefGoogle Scholar
  86. 86.
    Stepp JR, Cervone S, Castaneda H et al (2004) Development of a GIS for global biocultural diversity. Policy Matters 13:267–271Google Scholar
  87. 87.
    Skutnabb-Kangas T (2011) Language ecology. In: Östman JO, Verschueren J (eds) Pragmatics in practice. John Benjamins Publishing Company, Amsterdam, pp 176–198Google Scholar
  88. 88.
    Gavin MC, Sibanda N (2012) The island biogeography of languages. Glob Ecol Biogeogr 21(10):958–967CrossRefGoogle Scholar
  89. 89.
    Gillman LN, Wright SD, Cusens J et al (2015) Latitude, productivity and species richness. Glob Ecol Biogeogr 24:107–117CrossRefGoogle Scholar
  90. 90.
    Arita HT, Christen JA, Rodríguez P et al (2008) Species diversity and distribution in presence-absence matrices: mathematical relationships and biological implications. Am Nat 172(4):519–532PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Sutherland WJ, Adams WM, Aronson RB et al (2009) An assessment of the 100 questions of greatest importance to the conservation of global biological diversity. Conserv Biol 23:557–567PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Sutherland WJ, Freckleton RP, Godfray HCJ et al (2013) Identification of 100 fundamental ecological questions. J Ecol 101:58–67CrossRefGoogle Scholar
  93. 93.
    Grierson CS, Barnes RS, Chase MW et al (2011) One hundred important questions facing plant science research. New Phytol 192:6–12PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tania Vianney Gutiérrez-Santillán
    • 1
  • David Valenzuela-Galván
    • 2
  • Ulysses Paulino Albuquerque
    • 3
  • Francisco Reyes-Zepeda
    • 1
  • Leonardo Uriel Arellano-Méndez
    • 1
  • Arturo Mora-Olivo
    • 1
  • Luis-Bernardo Vázquez
    • 4
  1. 1.Instituto de Ecología AplicadaUniversidad Autónoma de TamaulipasCiudad VictoriaMexico
  2. 2.Departamento de Ecología Evolutiva, Centro de Investigación en Biodiversidad y ConservaciónUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  3. 3.Laboratório de Ecologia e Evolução de Sistemas Socioecológicos, Departamento de BotânicaCentro de Biociências, Universidade Federal de PernambucoRecifeBrazil
  4. 4.Departamento de Agricultura, Sociedad y AmbienteEl Colegio de la Frontera Sur Unidad San Cristóbal de Las Casas, San Cristóbal de Las CasasChiapasMexico

Personalised recommendations