Advertisement

Nanotoxicity pp 345-352 | Cite as

Application of Daphnia magna for Nanoecotoxicity Study

  • Zhizhen Xu
  • Yingying Liu
  • Yuqian Wang
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1894)

Abstract

Daphnia magna (D. magna), an aquatic invertebrate, is the most commonly used test organism in ecotoxicological studies on manufactured nanomaterials (MNs). Although standard protocols for undertaking acute and chronic toxicity tests of dissolved chemicals with D. magna have been endorsed by several national and international organizations, comprehensive guidance on aquatic toxicology testing of MNs with D. magna are in their infancy. Here we describe the acute and chronic toxicity methods with D. magna as test organism for nanoecotoxicity study. These methods may provide reference for the next step toward developing prescriptive aquatic toxicity standard tests for MNs with D. magna.

Key words

Nanomaterials Daphnia magna Nanoecotoxicity Acute toxicity Chronic toxicity 

Notes

Acknowledgment

This work was supported by the Youth Core Plan of Beijing Academy of Science and Technology (No. 201703).

References

  1. 1.
    Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17(5):387–395CrossRefGoogle Scholar
  2. 2.
    Petersen EJ, Diamond SA, Kennedy AJ, Goss GG, Ho K, Lead J, Hanna SK, Hartmann NB, Hund-Rinke K, Mader B, Manier N, Pandard P, Salinas ER, Sayre P (2015) Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: key issues and consensus recommendations. Environ Sci Technol 49(16):9532–9547CrossRefGoogle Scholar
  3. 3.
    Skjolding LM, Sørensen SN, Hartmann NB, Hjorth R, Hansen SF, Baun A (2016) Aquatic ecotoxicity testing of nanoparticles—the quest to disclose nanoparticle effects. Angew Chem Int Ed Engl 55(49):15224–15239CrossRefGoogle Scholar
  4. 4.
    Hansen SF, Sørensen SN, Skjolding LM, Hartmann NB, Baun A (2017) Revising REACH guidance on information requirements and chemical safety assessment for engineered nanomaterials for aquatic ecotoxicity endpoints: recommendations from the EnvNano project. Environ Sci Eur 29(1):1–15CrossRefGoogle Scholar
  5. 5.
    Hartmann NB, Ågerstrand M, Lützhøft HCH, Baun A (2017) NanoCREDA transparent framework to assess' the regulatory adequacy of ecotoxicity data for nanomaterials–relevance and reliability revisited. NanoImpact 6:81–89CrossRefGoogle Scholar
  6. 6.
    Hund-Rinke K, Baun A, Cupi D, Fernandes TF, Handy R, Kinross JH, Navas JM, Peijnenburg W, Schlich K, Shaw BJ, Scott-Fordsmand JJ (2016) Regulatory ecotoxicity testing of nanomaterials–proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles. Nanotoxicology 10(10):1442–1447CrossRefGoogle Scholar
  7. 7.
    Organisation for Economic Cooperation and Development (2012) Daphnia magna Reproduction Test. OECD Guideline 211 Paris, FranceGoogle Scholar
  8. 8.
    Samel A, Ziegenfuss M, Goulden CE, Banks S, Baer KN (1999) Culturing and bioassay testing of Daphnia magna using Elendt M4, Elendt M7, and COMBO media. Ecotoxicol Environ Saf 43(1):103–110CrossRefGoogle Scholar
  9. 9.
    Organisation for Economic Cooperation and Development (2017) Dispersion stability of nanomaterials in simulated environmental media. OECD Guideline 318 Paris, FranceGoogle Scholar
  10. 10.
    Standard methods for bioassay of daphnia magna straus. GB/T 16125–2012. Ministry of health, ChinaGoogle Scholar
  11. 11.
    US Environmental Protection Agency (2003) Standard operating procedure # 204 for moderately hard reconstituted water. SoBran, Dayton, OHGoogle Scholar
  12. 12.
    Liu Y, Fan W, Xu Z, Peng W, Luo S (2017) Transgenerational effects of reduced graphene oxide modified by au, Ag, Pd, Fe3O4, Co3O4 and SnO2 on two generations of Daphnia magna. Carbon 122:669–679CrossRefGoogle Scholar
  13. 13.
    Fan W, Liu Y, Xu Z, Wang X, Li X, Luo S (2016) The mechanism of chronic toxicity to: Daphnia magna induced by graphene suspended in a water column. Environ Sci Nano 3(6):1405–1415CrossRefGoogle Scholar
  14. 14.
    Yu ZG, Wang WX (2013) Influences of ambient carbon nanotubes on toxic metals accumulation in Daphnia magna. Water Res 47(12):4179–4187CrossRefGoogle Scholar
  15. 15.
    Organisation for Economic Cooperation and Development (2004) Daphnia sp., Acute Immobilisation Test. OECD Guideline 202 Paris, FranceGoogle Scholar
  16. 16.
    Adam N, Leroux F, Knapen D, Bals S, Blust R (2015) The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios. Water Res 68(6):249–261CrossRefGoogle Scholar
  17. 17.
    Fan W, Wang X, Cui M, Zhang D, Zhang Y, Yu T, Guo L (2012) Differential oxidative stress of octahedral and cubic Cu2O micro/nanocrystals to Daphnia magna. Environ Sci Technol 46(18):10255–10262CrossRefGoogle Scholar
  18. 18.
    Oberdörster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60 ) on aquatic organisms. Carbon 44(6):1112–1120CrossRefGoogle Scholar
  19. 19.
    Tervonen K, Waissi G, Petersen EJ, Akkanen J, Kukkonen JVK (2010) Analysis of fullerene-C60 and kinetic measurements for its accumulation and depuration in Daphnia magna. Environ Toxicol Chem 29(5):1072–1078PubMedGoogle Scholar
  20. 20.
    Arndt DA, Chen J, Moua M, Klaper RD (2014) Multigeneration impacts on Daphnia magna of carbon nanomaterials with differing core structures and functionalizations. Environ Toxicol Chem 33(3):541–547CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhizhen Xu
    • 1
  • Yingying Liu
    • 2
  • Yuqian Wang
    • 1
  1. 1.Key Laboratory of Occupational Safety and HealthBeijing Municipal Institute of Labour ProtectionBeijingPeople’s Republic of China
  2. 2.Department of Raw Material Industry ResearchChina Center for Information Industry DevelopmentBeijingPeople’s Republic of China

Personalised recommendations