Advertisement

Nanotoxicity pp 323-330 | Cite as

Pulmonary Function Testing in Animals

  • Gary W. Hoyle
  • Connie F. Schlueter
  • Sadiatu Musah
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1894)

Abstract

Nanoparticles possess a number of useful properties that make them useful for a variety of industrial and commercial applications. The small size of nanoparticles means that they are respirable and can penetrate deep into the lung when inhaled. Because of this, there is interest in assessing possible toxic effects of nanoparticles on the respiratory system. Measurement of respiratory mechanics and pulmonary function represents a sensitive way of detecting pathological effects of inhaled substances on the lungs. Here we describe a procedure for conducting pulmonary function measurements in mice using the forced oscillation technique. Measurements of baseline lung mechanics are conducted in anesthetized, mechanically ventilated mice, followed by repeated measurements subsequent to inhalation challenge with aerosolized methacholine. General guidelines for data analysis are provided, and sample results are presented.

Key words

Pulmonary function testing Forced oscillation technique Lung resistance Lung compliance 

References

  1. 1.
    Chan-Remillard S, Kapustka L, Goudey S (2009) Nanotechnology. In: Linkov I, Steevens J (eds) Nanomaterials: risks and benefits. Nato science for peace and security series C: environmental security. Springer, DordrechtGoogle Scholar
  2. 2.
    Wu T, Tang M (2018) Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol 38(1):25–40CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Madl AK, Plummer LE, Carosino C, Pinkerton KE (2014) Nanoparticles, lung injury, and the role of oxidant stress. Annu Rev Physiol 76:447–465CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shoeb M, Kodali V, Farris B, Bishop LM, Meighan T, Salmen R, Eye T, Roberts JR, Zeidler-Erdely P, Erdely A, Antonini JM (2017) Evaluation of the molecular mechanisms associated with cytotoxicity and inflammation after pulmonary exposure to different metal-rich welding particles. Nanotoxicology 11(6):725–736PubMedPubMedCentralGoogle Scholar
  5. 5.
    Wan R, Mo Y, Zhang Z, Jiang M, Tang S, Zhang Q (2017) Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part Fibre Toxicol 14(1):38CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Beck-Broichsitter M, Ruppert C, Schmehl T, Gunther A, Seeger W (2014) Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles. Biochim Biophys Acta 1838(1 Pt B):474–481CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Smith HJ, Reinhold P, Goldman MD (2005) Forced oscillation technique and impluse oscillometry. Eur Respir Mon 31:72–105Google Scholar
  8. 8.
    Bates JH, Irvin CG, Farre R, Hantos Z (2011) Oscillation mechanics of the respiratory system. Compr Physiol 1(3):1233–1272PubMedGoogle Scholar
  9. 9.
    Hantos Z, Daroczy B, Suki B, Nagy S, Fredberg JJ (1992) Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol 72(1):168–178CrossRefPubMedGoogle Scholar
  10. 10.
    Irvin CG, Bates JH (2003) Measuring the lung function in the mouse: the challenge of size. Respir Res 4, 4Google Scholar
  11. 11.
    Ambalavanan N, Stanishevsky A, Bulger A, Halloran B, Steele C, Vohra Y, Matalon S (2013) Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice. Am J Physiol Lung Cell Mol Physiol 304(3):L152–L161CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Botelho DJ, Leo BF, Massa CB, Sarkar S, Tetley TD, Chung KF, Chen S, Ryan MP, Porter AE, Zhang J, Schwander SK, Gow AJ (2016) Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity. Nanotoxicology 10(1):118–127PubMedGoogle Scholar
  13. 13.
    Jonasson S, Gustafsson A, Koch B, Bucht A (2013) Inhalation exposure of nano-scaled titanium dioxide (TiO2) particles alters the inflammatory responses in asthmatic mice. Inhal Toxicol 25(4):179–191CrossRefPubMedGoogle Scholar
  14. 14.
    Seiffert J, Buckley A, Leo B, Martin NG, Zhu J, Dai R, Hussain F, Guo C, Warren J, Hodgson A, Gong J, Ryan MP, Zhang JJ, Porter A, Tetley TD, Gow A, Smith R, Chung KF (2016) Pulmonary effects of inhalation of spark-generated silver nanoparticles in Brown-Norway and Sprague-Dawley rats. Respir Res 17(1):85CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gary W. Hoyle
    • 1
  • Connie F. Schlueter
    • 1
  • Sadiatu Musah
    • 1
  1. 1.Department of Environmental and Occupational Health Sciences, School of Public Health and Information SciencesUniversity of LouisvilleLouisvilleUSA

Personalised recommendations