Advertisement

Nanotoxicity pp 229-246 | Cite as

Evaluation of Nrf2 with Exposure to Nanoparticles

  • Fuli Zheng
  • Huangyuan Li
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1894)

Abstract

Transcription factor Nrf2, nuclear factor (erythroid-derived 2)-like 2, is considered a master regulator of redox homeostasis and plays a central role in antioxidant and anti-inflammatory defence. It has been largely reported that oxidative stress is implicated in nanoparticle-induced toxicity with the involvement of Nrf2. Several basic methods for Nrf2 evaluation with exposure to nanoparticles are described in this chapter including real-time reverse transcription-polymerase chain reaction (RT-PCR), western blotting, immunofluorescence staining, electrophoretic mobility shift assay, DNase I footprinting, dimethylsulfate footprinting, protein pulse-chase analysis, and tert-butylhydroquinone treatment.

Key words

Nrf2 Nanoparticles Antioxidant response element (ARE) EMSA Pulse chase analysis t-BHQ Footprinting 

Notes

Acknowledgments

This work was supported by NSFC grant (No. 81573195, 81172715, and 30800936) and Fujian Provincial Key Laboratory of Environmental Factors and Cancer.

References

  1. 1.
    Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40(4):328–346.  https://doi.org/10.3109/10408440903453074CrossRefPubMedGoogle Scholar
  2. 2.
    Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11.  https://doi.org/10.1186/1743-8977-3-11CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Borm PJA, Müller-Schulte D (2006) Nanoparticles in drug delivery and environmental exposure: same size, same risks? Nanomedicine (Lond) 1(2):235–249.  https://doi.org/10.2217/17435889.1.2.235CrossRefGoogle Scholar
  4. 4.
    Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90(1):23–32.  https://doi.org/10.1093/toxsci/kfj084CrossRefPubMedGoogle Scholar
  5. 5.
    Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105.  https://doi.org/10.1111/j.1365-2796.2009.02187.xCrossRefPubMedGoogle Scholar
  6. 6.
    Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839 PMCID: PMC1257642CrossRefGoogle Scholar
  7. 7.
    Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807.  https://doi.org/10.1021/nl061025kCrossRefPubMedGoogle Scholar
  8. 8.
    Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LCJ, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon J-C, Marano F (2009) Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology 260(1-3):142–149.  https://doi.org/10.1016/j.tox.2009.04.001CrossRefGoogle Scholar
  9. 9.
    Eom H-J, Choi J (2009) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 187(2):77–83.  https://doi.org/10.1016/J.TOXLET.2009.01.028CrossRefPubMedGoogle Scholar
  10. 10.
    Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23(6):1076–1084.  https://doi.org/10.1016/j.tiv.2009.06.001CrossRefPubMedGoogle Scholar
  11. 11.
    Park EJ, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24(3):872–878.  https://doi.org/10.1016/j.tiv.2009.12.001CrossRefPubMedGoogle Scholar
  12. 12.
    Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K (2008) Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180(3):222–229.  https://doi.org/10.1016/j.toxlet.2008.06.869CrossRefPubMedGoogle Scholar
  13. 13.
    Ding M, Kisin ER, Zhao J, Bowman L, Lu Y, Jiang B, Leonard S, Vallyathan V, Castranova V, Murray AR, Fadeel B, Shvedova AA (2009) Size-dependent effects of tungsten carbide–cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells. Toxicol Appl Pharmacol 241(3):260–268.  https://doi.org/10.1016/J.TAAP.2009.09.004CrossRefPubMedGoogle Scholar
  14. 14.
    Nguyen T, Huang HC, Pickett CB (2000) Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J Biol Chem 275(20):15466–15473.  https://doi.org/10.1074/jbc.M000361200CrossRefPubMedGoogle Scholar
  15. 15.
    Venugopal R, Jaiswal AK (1996) Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci U S A 93(25):14960–14965 PMCID: PMC26245CrossRefGoogle Scholar
  16. 16.
    Traboulsi H, Guerrina N, Iu M, Maysinger D, Ariya P, Baglole CJ (2017) Inhaled pollutants: the molecular scene behind respiratory and systemic diseases associated with ultrafine particulate matter. Int J Mol Sci 18(2):243.  https://doi.org/10.3390/ijms18020243CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47(9):1304–1309.  https://doi.org/10.1016/j.freeradbiomed.2009.07.035CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Osburn WO, Kensler TW (2008) Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutat Res 659(1-2):31–39.  https://doi.org/10.1016/j.mrrev.2007.11.006CrossRefPubMedGoogle Scholar
  19. 19.
    Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72(11):1605–1621.  https://doi.org/10.1016/J.BCP.2006.06.029CrossRefPubMedGoogle Scholar
  20. 20.
    Xu B, Zhang J, Strom J, Lee S, Chen QM (2014) Myocardial ischemic reperfusion induces de novo Nrf2 protein translation. Biochim Biophys Acta 1842(9):1638–1647.  https://doi.org/10.1016/j.bbadis.2014.06.002CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lee SC, Zhang J, Strom J, Yang D, Dinh TN, Kappeler K, Chen QM (2016) G-quadruplex in Nrf2 5′ UTR regulates de novo Nrf2 protein translation under oxidative stress. Mol Cell Biol 37(1):e00122–e00116.  https://doi.org/10.1128/MCB.00122-16CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li H, Wu S, Wang Z, Lin W, Zhang C, Huang B (2012) Neuroprotective effects of tert-butylhydroquinone on paraquat-induced dopaminergic cell degeneration in C57BL/6 mice and in PC12 cells. Arch Toxicol 86(11):1729–1740.  https://doi.org/10.1007/s00204-012-0935-yCrossRefPubMedGoogle Scholar
  23. 23.
    Ye F, Li X, Li L, Yuan J, Chen J (2016) t-BHQ provides protection against lead neurotoxicity via Nrf2/HO-1 pathway. Oxid Med Cell Longev 2016(2016): 1–15. doi:  https://doi.org/10.1155/2016/2075915Google Scholar
  24. 24.
    Li H, Wu S, Shi N (2007) Transcription factor Nrf2 activation by deltamethrin in PC12 cells: involvement of ROS. Toxicol Lett 171(1-2):87–98.  https://doi.org/10.1016/j.toxlet.2007.04.007CrossRefPubMedGoogle Scholar
  25. 25.
    Li H, Zhong Y, Wu S, Shi N (2007) NF-E2 related factor 2 activation and heme oxygenase-1 induction by tert -butylhydroquinone protect against deltamethrin-mediated oxidative stress in PC12 cells. Chem Res Toxicol 20(9):1242–1251.  https://doi.org/10.1021/tx700076qCrossRefPubMedGoogle Scholar
  26. 26.
    Li H, Wu S, Shi N, Lin W, You J, Zhou W (2011) NF-E2-related factor 2 activation in PC12 cells: its protective role in manganese-induced damage. Arch Toxicol 85(8):901–910.  https://doi.org/10.1007/s00204-010-0625-6CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang Z, Guo Z, Zhan Y, Li H, Wu S (2017) Role of histone acetylation in activation of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 pathway by manganese chloride. Toxicol Appl Pharmacol 336:94–100.  https://doi.org/10.1016/j.taap.2017.10.011CrossRefPubMedGoogle Scholar
  28. 28.
    Li H, Wu S, Shi N, Lian S, Lin W (2011) Nrf2/HO-1 pathway activation by manganese is associated with reactive oxygen species and ubiquitin-proteasome pathway, not MAPKs signaling. J Appl Toxicol 31(7):690–697.  https://doi.org/10.1002/jat.1654CrossRefPubMedGoogle Scholar
  29. 29.
    Li H, Wu S, Ma Q, Shi N (2011) The pesticide deltamethrin increases free radical production and transcription factor Nrf2 in rat brain. Toxicol Ind Health 27(7):579–590.  https://doi.org/10.1177/0748233710393400CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li H, Wu S, Chen J, Wang B, Shi N (2013) Effect of glutathione depletion on Nrf2/ARE activation by deltamethrin in PC12 cells. Arch Ind Hyg Toxicol 64(1):87–97.  https://doi.org/10.2478/10004-1254-64-2013-2251CrossRefGoogle Scholar
  31. 31.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  32. 32.
    Brunelle JL, Green R (2014) One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzymol 541:151–159CrossRefGoogle Scholar
  33. 33.
    Sambrook J, Fritsch EF, Maniatis Y (1989) Sequencing by the Maxam-Gilbert method: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 13.78–13.104Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fuli Zheng
    • 1
    • 2
  • Huangyuan Li
    • 1
    • 2
  1. 1.Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public HealthFujian Medical UniversityFuzhouP. R. China
  2. 2.Department of Preventive Medicine, School of Public HealthFujian Medical UniversityFuzhouP. R. China

Personalised recommendations