Advertisement

Rice Grain Quality Benchmarking Through Profiling of Volatiles and Metabolites in Grains Using Gas Chromatography Mass Spectrometry

  • Cindy Llorente
  • Rosario Jimenez
  • Jackie
  • Yariv Brotman
  • Alisdair R. Fernie
  • Nese SreenivasuluEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1892)

Abstract

Gas chromatograph coupled with mass spectrometer is widely used to profile volatiles and metabolites from the homogenized rice flour obtained from mature grains. Rice grains consist of central endosperm which stores majorly starch and, in addition, accumulate various storage proteins as storage reserves. The outer nutritious aleurone layer stores lipids, sugar alcohols, volatiles, antioxidants, vitamins, and various micronutrients. Once paddy sample is dehulled, milled, and ground cryogenically, the brown rice flour is subjected to extraction of primary metabolites and volatiles using an appropriate extraction method. In metabolite profiling of the liquid extract obtained from the rice sample, mixture is initially subjected to methoxyamination then silylation before being subjected to untargeted metabolite profiling. Peaks obtained are processed for noise reduction and specific signal selection. Volatile compounds are initially extracted using a solid phase adsorbent prior to analysis. All these compounds, metabolites, and volatiles are detected in the mass selective detector by fragmentation at 70 eV ionization energy and the resultant mass spectrum compared with a built-in library of compounds. Data mined from the gas chromatography mass spectrometry analysis are then subjected to post-processing statistical analysis.

Key words

Rice Aroma Metabolites Metabolite profile analyses 

Notes

Acknowledgments

This work has been supported under the CGIAR thematic area Global Rice Agri-Food System CRP, RICE, Stress-Tolerant Rice for Africa and South Asia (STRASA) Phase III funding.

References

  1. 1.
    Sreenivasulu N, Wobus U (2013) Seed-development programs: a systems biology-based comparison between dicots and monocots. Annu Rev Plant Biol 64:189–217CrossRefGoogle Scholar
  2. 2.
    Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689CrossRefGoogle Scholar
  3. 3.
    Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269CrossRefGoogle Scholar
  4. 4.
    Zhen S, Dong K, Deng X, Zhou J, Xu X, Han C, Zhang W, Xu Y, Wang Z, Yan Y (2016) Dynamic metabolome profiling reveals significant metabolic changes during grain development of bread wheat (triticum aestivum L.). J Sci Food Agric 96(11):3731–3740CrossRefGoogle Scholar
  5. 5.
    Q-q Y, C-q Z, M-l C, D-s Z, J-z C, Wang Q, Li Q-f, H-x Y, Gu M-h, SS-m S, Q-q L (2016) Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. J Exp Bot 67:4285–4296CrossRefGoogle Scholar
  6. 6.
    Tian JS, Liu CC, Xiang H, Zheng XF, Peng GJ, Zhang X, Du GH, Qin XM (2015) Investigation on the antidepressant effect of sea buckthorn seed oil through the GC-MS-based metabolomics approach coupled with multivariate analysis. Food Funct 6(11):3585–3592CrossRefGoogle Scholar
  7. 7.
    Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry–based metabolite profiling in plants. Nat Prot 1:387–396CrossRefGoogle Scholar
  8. 8.
    Butardo VM Jr, Sreenivasulu N (2016) Tailoring grain storage reserves for a healthier rice diet and its comparative status with other cereals. Int Rev Cell Mol Biol 323:31–70CrossRefGoogle Scholar
  9. 9.
    Calingacion MN, Boualaphanh C, Daygon VD, Anacleto R, Sackville-Hamilton NR, Biais B, Deborde C, Maucourt M, Moing A, Mumm R, de Vos RCH, Erban A, Kopka J, Hansen TH, Laursen KH, Schjoerring JK, Hall RD, Fitzgerald MA (2012) A genomics and multi-platform metabolomics approach to identify new traits of rice quality in traditional and improved varieties. Metabolomics 8:771–783CrossRefGoogle Scholar
  10. 10.
    Kusano M, Fukushima A, Fujita N, Okazaki Y, Kobayashi M, Oitome NF, Ebana K, Saito K (2012) Deciphering starch quality of rice kernels using metabolite profiling and pedigree network analysis. Mol Plant 5:442–451CrossRefGoogle Scholar
  11. 11.
    Bryant RJ, McClung AM (2011) Volatile profiles of aromatic and non-aromatic rice cultivars using SPME/GC-MS. Food Chem 124(2):501–513CrossRefGoogle Scholar
  12. 12.
    Zeng Y-X, Hu C-Y, Lu Y-G, Li J-Q, Liu X-D (2009) Abnormalities occurring during female gametophyte development result in the diversity of abnormal embryo sacs and leads to abnormal fertilization in indica/japonica hybrids in rice. J Integr Plant Biol 51(1):3–12CrossRefGoogle Scholar
  13. 13.
    Kim JK, Park S-Y, Lim S-H, Yeo Y, Cho HS, Ha S-H (2013) Comparative metabolic profiling of pigmented rice (Oryza sativa L.) cultivars reveals primary metabolites are correlated with secondary metabolites. J Cereal Sci 57:14–20CrossRefGoogle Scholar
  14. 14.
    Matsuda F, Okazaki Y, Oikawa A, Kusano M, Nakabayashi R, Kikuchi J, J-i Y, Ebana K, Yano M, Saito K (2012) Dissection of genotype–phenotype associations in rice grains using metabolome quantitative trait loci analysis. The Plant J 70:624–636CrossRefGoogle Scholar
  15. 15.
    Zhou XH, Dong Y, Xiao X, Wang Y, Xu Y, Xu B, Shi WD, Zhang Y, Zhu LJ, Liu QQ (2011) A 90-day toxicology study of high-amylose transgenic rice grain in Sprague–Dawley rats. Food Chem Toxic 49(12):3112–3118CrossRefGoogle Scholar
  16. 16.
    Vu NT, Shimada H, Kakuta Y, Nakashima T, Ida H, Omori T, Nishi A, Satoh H, Kimura M (2008) Biochemical and crystallographic characterization of the starch branching enzyme I (BEI) from Oryza sativa L. Biosci Biotech Biochem 72(11):2858–2866CrossRefGoogle Scholar
  17. 17.
    C-y L, Lai VMF, Shen M-C (2004) Changes in retrogradation properties of rice starches with amylose content and molecular properties. Cereal Chem 81(3):392–398CrossRefGoogle Scholar
  18. 18.
    Calingacion M, Fang L, Quiatchon-Baeza L, Mumm R, Riedel A, Hall RD, Fitzgerald M (2015) Delving deeper into technological innovations to understand differences in rice quality. Rice 8:43CrossRefGoogle Scholar
  19. 19.
    Annison G, Illman RJ, Topping DL (2003) Acetylated, propionylated or butyrylated starches raise large bowel short-chain fatty acids preferentially when fed to rats. J Nutr 133(11):3523–3528CrossRefGoogle Scholar
  20. 20.
    Champagne ET, Bett-Garber KL, Grimm CC, McClung AM, Moldenhauer KA, Linscombe S, McKenzie KS, Barton FE (2001) Near-infrared reflectance analysis for prediction of cooked rice texture. Cereal Chem 78(3):358–362CrossRefGoogle Scholar
  21. 21.
    Laguerre M, Mestres C, Davrieux F, Ringuet J, Boulanger R (2007) Rapid discrimination of scented rice by solid-phase microextraction, mass spectrometry, and mutivariate analysis used as a mass sensor. J Agric Food Chem 55:1077–1083CrossRefGoogle Scholar
  22. 22.
    Redestig H, Kusano M, Ebana K, Kobayashi M, Oikawa A, Okazaki Y, Matsuda F, Arita M, Fujita N, Saito K (2011) Exploring molecular backgrounds of quality traits in rice by predictive models based on high-coverage metabolomics. BMC Syst Biol 5:176CrossRefGoogle Scholar
  23. 23.
    Zhou J, Ma C, Xu H, Yuan K, Lu X, Zhu Z, Wu Y, Xu G (2009) Metabolic profiling of transgenic rice with cryIAc and sck genes: an evaluation of unintended effects at metabolic level by using GC-FID and GC-MS. J Chromatogr B: Analyt Technol Biomed Life Sci 877:725–732CrossRefGoogle Scholar
  24. 24.
    Frank T, Meuleye BS, Miller A, Shu Q-Y, Engel K-H (2007) Metabolite profiling of two low phytic acid (lpa) rice mutants. J Agric Food Chem 55:11011–11019CrossRefGoogle Scholar
  25. 25.
    Heuberger AL, Lewis MR, Chen M-H, Brick MA, Leach JE, Ryan EP (2010) Metabolomic and functional genomic analyses reveal varietal differences in bioactive compounds of cooked rice. PLoS One 5(9):e12915CrossRefGoogle Scholar
  26. 26.
    Yang DS, Shewfelt RL, Lee K-S, Kays SJ (2008) Comparison of odor-active compounds from six distinctly different rice flavor types. J Agric Food Chem 56(8):2780–2787CrossRefGoogle Scholar
  27. 27.
    Verhoeven HA, Jonker H, RCH DV, Hall RD (2012) Solid phase micro-extraction GC–MS analysis of natural volatile components in melon and Rice. In: Hardy NW, Hall RD (eds) Plant metabolomics: methods and protocols. Humana Press, Totowa, NJ, pp 85–99Google Scholar
  28. 28.
    Agilent Technologies, Inc (2013) Agilent fiehn GC/MS metabolomics RTL library a complete GC/MS solution for metabolite identification. Agilent TechnologiesGoogle Scholar
  29. 29.
    Soria AC, Sanz ML, Villamiel M (2009) Determination of minor carbohydrates in carrot (Daucus carota L.) by GC-MS. Food Chem 114:758–762CrossRefGoogle Scholar
  30. 30.
    Ruiz-Matute AI, Hernández-Hernández O, Rodríguez-Sánchez S, Sanz ML, Martínez-Castro I (2011) Derivatization of carbohydrates for GC and GC–MS analyses. J Chromatogr B Analyt Technol Biomed Life Sci 879:1226–1240CrossRefGoogle Scholar
  31. 31.
    Lou Q, Ma C, Wen W, Zhou J, Chen L, Feng F, Xu X, Lu X, Luo L, Mei H, Xu G (2011) Profiling and association mapping of grain metabolites in a subset of the core collection of Chinese rice Germplasm (Oryza sativa L.). J Agric Food Chem 59:9257–9264CrossRefGoogle Scholar
  32. 32.
    Chang WT, Lin DL, Liu RH (2001) Isotopic analogs as internal standards for quantitative analyses by GC/MS—evaluation of cross-contribution to ions designated for the analyte and the isotopic internal standard. Forensic Sci Int 121(3):174–182CrossRefGoogle Scholar
  33. 33.
    Chen M, Rao RSP, Zhang Y, Zhong CX, Thelen JJ (2014) A modified data normalization method for GC-MS-based metabolomics to minimize batch variation. Springerplus 3:439CrossRefGoogle Scholar
  34. 34.
    Winnike JH, Wei X, Knagge KJ, Colman SD, Gregory SG, Zhang X (2015) Comparison of GC-MS and GC×GC-MS in the analysis of human serum samples for biomarker discovery. J Proteome Res 14(4):1810–1817CrossRefGoogle Scholar
  35. 35.
    Zhao X, Zhang G, Wang Y, Zhang F, Wang W, Zhang W, Fu B, Xu J, Li Z (2016) Metabolic profiling and physiological analysis of a novel Rice introgression line with broad leaf size. PLoS One 10(12):e0145646CrossRefGoogle Scholar
  36. 36.
    Li J, Dong F, Xu J, Liu X, Li Y, Shan W, Zheng Y (2011) Enantioselective determination of triazole fungicide simeconazole in vegetables, fruits, and cereals using modified QuEChERS (quick, easy, cheap, effective, rugged and safe) coupled to gas chromatography/tandem mass spectrometry. Anal Chim Acta 702(1):127–135CrossRefGoogle Scholar
  37. 37.
    Tranchida PQ, Zoccali M, Schipilliti L, Sciarrone D, Dugo P, Mondello L (2013) Solid-phase microextraction with fast GC combined with a high-speed triple quadrupole mass spectrometer for targeted and untargeted food analysis. J Sep Sci 36(13):2145–2150CrossRefGoogle Scholar
  38. 38.
    Matthews J, Gemme S, Huebschmann H-J, Llorente C, Jimenez R, Sreenivasulu N (2015) Metabolomics of rice genotypes using GC-MS/MS. ThermoScientific Application Note 1–9Google Scholar
  39. 39.
    Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L, Fernie AR, Kopka J (2005) GC–MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 579(6):1332–1337CrossRefGoogle Scholar
  40. 40.
    Agilent Technologies, Inc (2005) Automated mass spectral deconvolution and identification system AMDIS 2.64, in Released December, NISTGoogle Scholar
  41. 41.
    Cuadros-Inostroza Á, Caldana C, Redestig H, Kusano M, Lisec J, Peña-Cortés H, Willmitzer L, Hannah MA (2009) TargetSearch-a bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinformatics 10:428CrossRefGoogle Scholar
  42. 42.
    van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Cindy Llorente
    • 1
  • Rosario Jimenez
    • 1
  • Jackie
    • 2
  • Yariv Brotman
    • 3
    • 4
  • Alisdair R. Fernie
    • 3
    • 5
  • Nese Sreenivasulu
    • 1
    Email author
  1. 1.International Rice Research InstituteLos BañosPhilippines
  2. 2.Shimadzu (Asia Pacific) Pte. Ltd.SingaporeSingapore
  3. 3.Max-Planck-Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
  4. 4.Department of Life SciencesBen-Gurion University of the NegevBeershebaIsrael
  5. 5.Center of Plant System Biology and BiotechnologyPlovdivBulgaria

Personalised recommendations