Hippo Pathway Regulation by Tyrosine Kinases

  • Nina Reuven
  • Matan Shanzer
  • Yosef ShaulEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1893)


The Hippo pathway utilizes a well-characterized Ser/Thr kinase cascade to control the downstream effectors, Yap and Taz. In addition, Yap/Taz and other Hippo pathway components are directly regulated by tyrosine kinases (TKs). The methodological strategies described here use the example of the c-Abl non-receptor TK and the Yap substrate to outline the steps used to identify and to validate tyrosine phosphorylation sites, including bioinformatic approaches, ectopic expression of proteins in transfected tissue culture cells, and mutagenesis of endogenous proteins by CRISPR-Cas9. These general strategies can be applied to investigate regulation of protein signaling moieties by tyrosine phosphorylation in the context of distinct TKs.

Key words

Hippo pathway Cell fate determination Tyrosine phosphorylation Non-receptor tyrosine kinases Abl Src Yap Yes-associated protein Taz Transcriptional co-activator with PDZ-binding motif WWTR1 CRISPR-mediated gene editing 


  1. 1.
    Meng Z, Moroishi T, Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30(1):1–17. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Reuven N, Shanzer M, Shaul Y (2015) Tyrosine phosphorylation of WW proteins. Exp Biol Med (Maywood) 240(3):375–382. CrossRefGoogle Scholar
  3. 3.
    Pluk H, Dorey K, Superti-Furga G (2002) Autoinhibition of c-Abl. Cell 108(2):247–259CrossRefGoogle Scholar
  4. 4.
    Brown MT, Cooper JA (1996) Regulation, substrates and functions of src. Biochim Biophys Acta 1287(2–3):121–149PubMedGoogle Scholar
  5. 5.
    Sudol M (1994) Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 9(8):2145–2152PubMedPubMedCentralGoogle Scholar
  6. 6.
    Zaidi SK, Sullivan AJ, Medina R, Ito Y, van Wijnen AJ, Stein JL, Lian JB, Stein GS (2004) Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBO J 23(4):790–799. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Matsumoto Y, La Rose J, Kent OA, Wagner MJ, Narimatsu M, Levy AD, Omar MH, Tong J, Krieger JR, Riggs E, Storozhuk Y, Pasquale J, Ventura M, Yeganeh B, Post M, Moran MF, Grynpas MD, Wrana JL, Superti-Furga G, Koleske AJ, Pendergast AM, Rottapel R (2016) Reciprocal stabilization of ABL and TAZ regulates osteoblastogenesis through transcription factor RUNX2. J Clin Invest 126(12):4482–4496. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC, Shao DD, Schumacher SE, Weir BA, Vazquez F, Cowley GS, Root DE, Mesirov JP, Beroukhim R, Kuo CJ, Goessling W, Hahn WC (2012) Beta-catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151(7):1457–1473. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Vlahov N, Scrace S, Soto MS, Grawenda AM, Bradley L, Pankova D, Papaspyropoulos A, Yee KS, Buffa F, Goding CR, Timpson P, Sibson N, O'Neill E (2015) Alternate RASSF1 transcripts control SRC activity, E-cadherin contacts, and YAP-mediated invasion. Curr Biol 25(23):3019–3034. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Taniguchi K, Wu LW, Grivennikov SI, de Jong PR, Lian I, Yu FX, Wang K, Ho SB, Boland BS, Chang JT, Sandborn WJ, Hardiman G, Raz E, Maehara Y, Yoshimura A, Zucman-Rossi J, Guan KL, Karin M (2015) A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 519(7541):57–62. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Taniguchi K, Moroishi T, de Jong PR, Krawczyk M, Grebbin BM, Luo H, Xu RH, Golob-Schwarzl N, Schweiger C, Wang K, Di Caro G, Feng Y, Fearon ER, Raz E, Kenner L, Farin HF, Guan KL, Haybaeck J, Datz C, Zhang K, Karin M (2017) YAP-IL-6ST autoregulatory loop activated on APC loss controls colonic tumorigenesis. Proc Natl Acad Sci U S A 114(7):1643–1648. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Byun MR, Hwang JH, Kim AR, Kim KM, Park JI, Oh HT, Hwang ES, Hong JH (2017) SRC activates TAZ for intestinal tumorigenesis and regeneration. Cancer Lett 410:32–40. CrossRefPubMedGoogle Scholar
  13. 13.
    Levy D, Reuven N, Shaul Y (2008) A regulatory circuit controlling Itch-mediated p73 degradation by Runx. J Biol Chem 283(41):27462–27468. CrossRefPubMedGoogle Scholar
  14. 14.
    Keshet R, Adler J, Ricardo Lax I, Shanzer M, Porat Z, Reuven N, Shaul Y (2015) C-Abl antagonizes the YAP oncogenic function. Cell Death Differ 22(6):935–945. CrossRefGoogle Scholar
  15. 15.
    Keshet R, Reuven N, Shaul Y (2015) C-Abl forces YAP to switch sides. Mol Cell Oncol 2(3):e995006. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sudol M (2013) YAP1 oncogene and its eight isoforms. Oncogene 32(33):3922. CrossRefPubMedGoogle Scholar
  17. 17.
    Huang H, Woo AJ, Waldon Z, Schindler Y, Moran TB, Zhu HH, Feng GS, Steen H, Cantor AB (2012) A Src family kinase-Shp2 axis controls RUNX1 activity in megakaryocyte and T-lymphocyte differentiation. Genes Dev 26(14):1587–1601. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Agami R, Blandino G, Oren M, Shaul Y (1999) Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature 399(6738):809–813. CrossRefPubMedGoogle Scholar
  19. 19.
    Li P, Silvis MR, Honaker Y, Lien WH, Arron ST, Vasioukhin V (2016) alphaE-catenin inhibits a Src-YAP1 oncogenic module that couples tyrosine kinases and the effector of Hippo signaling pathway. Genes Dev 30(7):798–811. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xiao L, Chen D, Hu P, Wu J, Liu W, Zhao Y, Cao M, Fang Y, Bi W, Zheng Z, Ren J, Ji G, Wang Y, Yuan Z (2011) The c-Abl-MST1 signaling pathway mediates oxidative stress-induced neuronal cell death. J Neurosci 31(26):9611–9619. CrossRefPubMedGoogle Scholar
  21. 21.
    Liu W, Wu J, Xiao L, Bai Y, Qu A, Zheng Z, Yuan Z (2012) Regulation of neuronal cell death by c-Abl-Hippo/MST2 signaling pathway. PLoS One 7(5):e36562. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Reuven N, Adler J, Meltser V, Shaul Y (2013) The Hippo pathway kinase Lats2 prevents DNA damage-induced apoptosis through inhibition of the tyrosine kinase c-Abl. Cell Death Differ 20(10):1330–1340. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shanzer M, Ricardo-Lax I, Keshet R, Reuven N, Shaul Y (2015) The polyomavirus middle T-antigen oncogene activates the Hippo pathway tumor suppressor Lats in a Src-dependent manner. Oncogene 34(32):4190–4198. CrossRefPubMedGoogle Scholar
  24. 24.
    Shanzer M, Adler J, Ricardo-Lax I, Reuven N, Shaul Y (2017) The nonreceptor tyrosine kinase c-Src attenuates SCF(beta-TrCP) E3-ligase activity abrogating Taz proteasomal degradation. Proc Natl Acad Sci U S A 114(7):1678–1683. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Levy D, Adamovich Y, Reuven N, Shaul Y (2008) Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol Cell 29(3):350–361. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    PhosphositePlus. Accessed 9 Jan 2018
  27. 27.
    Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43(Database issue):D512–D520. CrossRefPubMedGoogle Scholar
  28. 28.
  29. 29.
    Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4(6):1633–1649. CrossRefPubMedGoogle Scholar
  30. 30.
  31. 31.
    Dinkel H, Chica C, Via A, Gould CM, Jensen LJ, Gibson TJ, Diella F (2011) Phospho.ELM: a database of phosphorylation sites—update 2011. Nucleic Acids Res 39(Database issue):D261–D267. CrossRefPubMedGoogle Scholar
  32. 32.
  33. 33.
    Xue Y, Liu Z, Cao J, Ma Q, Gao X, Wang Q, Jin C, Zhou Y, Wen L, Ren J (2011) GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein Eng Des Sel 24(3):255–260. CrossRefPubMedGoogle Scholar
  34. 34.
  35. 35.
    Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31(13):3635–3641CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Dinkel H, Van Roey K, Michael S, Kumar M, Uyar B, Altenberg B, Milchevskaya V, Schneider M, Kuhn H, Behrendt A, Dahl SL, Damerell V, Diebel S, Kalman S, Klein S, Knudsen AC, Mader C, Merrill S, Staudt A, Thiel V, Welti L, Davey NE, Diella F, Gibson TJ (2016) ELM 2016—data update and new functionality of the eukaryotic linear motif resource. Nucleic Acids Res 44(D1):D294–D300. CrossRefPubMedGoogle Scholar
  38. 38.
    Druker BJ (2002) Perspectives on the development of a molecularly targeted agent. Cancer Cell 1(1):31–36CrossRefGoogle Scholar
  39. 39.
    Weisberg E, Manley P, Mestan J, Cowan-Jacob S, Ray A, Griffin JD (2006) AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer 94(12):1765–1769. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gray NS, Fabbro D (2014) Discovery of allosteric BCR-ABL inhibitors from phenotypic screen to clinical candidate. Methods Enzymol 548:173–188. CrossRefPubMedGoogle Scholar
  41. 41.
    Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, Castaneda S, Cornelius LA, Das J, Doweyko AM, Fairchild C, Hunt JT, Inigo I, Johnston K, Kamath A, Kan D, Klei H, Marathe P, Pang S, Peterson R, Pitt S, Schieven GL, Schmidt RJ, Tokarski J, Wen ML, Wityak J, Borzilleri RM (2004) Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 47(27):6658–6661. CrossRefPubMedGoogle Scholar
  42. 42.
    Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ, Pollok BA, Connelly PA (1996) Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem 271(2):695–701CrossRefGoogle Scholar
  43. 43.
    Dephoure N, Gould KL, Gygi SP, Kellogg DR (2013) Mapping and analysis of phosphorylation sites: a quick guide for cell biologists. Mol Biol Cell 24(5):535–542. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
  46. 46.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
  48. 48.
    Hobbs S, Jitrapakdee S, Wallace JC (1998) Development of a bicistronic vector driven by the human polypeptide chain elongation factor 1alpha promoter for creation of stable mammalian cell lines that express very high levels of recombinant proteins. Biochem Biophys Res Commun 252(2):368–372. CrossRefPubMedGoogle Scholar
  49. 49.
    Barila D, Superti-Furga G (1998) An intramolecular SH3-domain interaction regulates c-Abl activity. Nat Genet 18(3):280–282. CrossRefPubMedGoogle Scholar
  50. 50.
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations