Advertisement

Quantitative Real-Time PCR to Measure YAP/TAZ Activity in Human Cells

  • Xiaolei Cao
  • Bin Zhao
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1893)

Abstract

Transcription coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ, also known as WWTR1) are homologs of the Drosophila Yorkie (Yki) protein and are major downstream effectors of the evolutionarily conserved Hippo pathway. YAP/TAZ play critical roles in regulation of cell proliferation, apoptosis, and stemness, thus mediate functions of the Hippo pathway in organ size control and tumorigenesis. The Hippo pathway inhibits YAP/TAZ through phosphorylation, which leads to YAP/TAZ cytoplasmic retention and degradation. Dephosphorylated and nuclear-localized YAP/TAZ bind to transcription factors, especially the TEAD family proteins, thus transactivate the expression of specific genes. Therefore, measuring the expression level of YAP/TAZ target genes is a critical approach to assess Hippo pathway activity. Through gene expression profiling in different tissues and cells using techniques such as microarray and RNA-seq, many target genes of YAP/TAZ have been identified. Some of these genes were confirmed to be direct YAP/TAZ targets by chromatin immunoprecipitation (ChIP)-PCR or ChIP-seq. These works made it possible to quickly determine YAP/TAZ activity by measuring the mRNA levels of several YAP/TAZ target genes, such as CTGF, CYR61, and miR-130a by quantitative real-time PCR (qPCR). In this chapter, we demonstrate the use of qPCR to measure YAP/TAZ activity in MCF10A cells.

Key words

YAP TAZ Hippo pathway Quantitative real-time PCR CTGF CYR61 miR-130a 

Notes

Acknowledgments

This work was supported by grants to B. Zhao from the National Natural Science Foundation of China Key Project (81730069), General Project (31471316) and the National Key R&D Program of China (2017YFA0504502), the National Natural Science Foundation of China International Collaboration Project (31661130150), the Fundamental Research Funds for the Central Universities, and the Qianjiang Scholar Plan of Hangzhou, the Thousand Young Talents Plan of China, and the Newton Advanced Fellowship from the Academy of Medical Sciences, UK.

References

  1. 1.
    Sudol M (1994) Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 9(8):2145–2152PubMedGoogle Scholar
  2. 2.
    Yagi R, Chen LF, Shigesada K, Murakami Y, Ito Y (1999) A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J 18(9):2551–2562PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122(3):421–434PubMedCrossRefGoogle Scholar
  4. 4.
    Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A, Pan D (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130(6):1120–1133.  https://doi.org/10.1016/j.cell.2007.07.019 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21(21):2747–2761.  https://doi.org/10.1101/gad.1602907 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zhao B, Li L, Tumaneng K, Wang CY, Guan KL (2010) A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 24(1):72–85.  https://doi.org/10.1101/gad.1843810 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M, Hisaminato A, Fujiwara T, Ito Y, Cantley LC, Yaffe MB (2000) TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J 19(24):6778–6791PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Murakami M, Tominaga J, Makita R, Uchijima Y, Kurihara Y, Nakagawa O, Asano T, Kurihara H (2006) Transcriptional activity of Pax3 is co-activated by TAZ. Biochem Biophys Res Commun 339(2):533–539PubMedCrossRefGoogle Scholar
  9. 9.
    Mahoney WM Jr, Hong JH, Yaffe MB, Farrance IK (2005) The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members. Biochem J 388(Pt 1):217–225.  https://doi.org/10.1042/BJ20041434 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163(4):811–828.  https://doi.org/10.1016/j.cell.2015.10.044 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, Lauwers GY, Thasler W, Lee JT, Avruch J, Bardeesy N (2009) Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16(5):425–438.  https://doi.org/10.1016/j.ccr.2009.09.026 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, Brummelkamp TR (2007) YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 17(23):2054–2060.  https://doi.org/10.1016/j.cub.2007.10.039 PubMedCrossRefGoogle Scholar
  13. 13.
    Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A (2008) SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol 18(6):435–441.  https://doi.org/10.1016/j.cub.2008.02.034 PubMedCrossRefGoogle Scholar
  14. 14.
    Wu S, Liu Y, Zheng Y, Dong J, Pan D (2008) The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 14(3):388–398.  https://doi.org/10.1016/j.devcel.2008.01.007 PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang L, Ren F, Zhang Q, Chen Y, Wang B, Jiang J (2008) The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 14(3):377–387.  https://doi.org/10.1016/j.devcel.2008.01.006 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zhao B, Ye X, Yu J, Li L, Li W, Li S, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22(14):1962–1971.  https://doi.org/10.1101/gad.1664408 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML (2001) TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 15(10):1229–1241PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Alarcon C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ, Sapkota G, Pan D, Massague J (2009) Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 139(4):757–769.  https://doi.org/10.1016/j.cell.2009.09.035 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Komuro A, Nagai M, Navin NE, Sudol M (2003) WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem 278(35):33334–33341PubMedCrossRefGoogle Scholar
  20. 20.
    Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A, Oren M, Sudol M, Cesareni G, Blandino G (2001) Physical interaction with yes-associated protein enhances p73 transcriptional activity. Eur J Cancer 37(18):15164–15173Google Scholar
  21. 21.
    Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC (2012) β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151(7):1457–1473PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Heallen T, Zhang M, Wang J, Bonillaclaudio M, Klysik E, Johnson RL, Martin JF (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332(6028):458PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Shao D, Zhai P, Del Re DP, Sciarretta S, Yabuta N, Nojima H, Lim DS, Pan D, Sadoshima J (2014) A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat Commun 5:3315PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J, Wrana JL (2010) The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev Cell 19(6):831–844PubMedCrossRefGoogle Scholar
  25. 25.
    Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL (2008) TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol 10(7):837PubMedCrossRefGoogle Scholar
  26. 26.
    Stein C, Bardet AF, Roma G, Bergling S, Clay I, Ruchti A, Agarinis C, Schmelzle T, Bouwmeester T, Schübeler D (2015) YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLoS Genet 11(8):e1005465PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Galli GG, Carrara M, Yuan WC, Valdes-Quezada C, Gurung B, Pepe-Mooney B, Zhang T, Geeven G, Gray NS, De LW (2015) YAP drives growth by controlling transcriptional pause release from dynamic enhancers. Mol Cell 60(2):328PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, Rosato A, Bicciato S, Cordenonsi M, Piccolo S (2015) Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol 17(9):1218–1227PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber DA, Hariharan IK (2002) Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110(4):467–478PubMedCrossRefGoogle Scholar
  30. 30.
    Neto-Silva RM, de Beco S, Johnston LA (2010) Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of Yap. Dev Cell 19(4):507–520.  https://doi.org/10.1016/j.devcel.2010.09.009 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ziosi M, Baena-Lopez LA, Grifoni D, Froldi F, Pession A, Garoia F, Trotta V, Bellosta P, Cavicchi S (2010) dMyc functions downstream of Yorkie to promote the supercompetitive behavior of hippo pathway mutant cells. PLoS Genet 6(9):e1001140.  https://doi.org/10.1371/journal.pgen.1001140 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ren F, Wang B, Yue T, Yun EY, Ip YT, Jiang J (2010) Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc Natl Acad Sci U S A 107(49):21064–21069.  https://doi.org/10.1073/pnas.1012759107 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Zhang J, Ji JY, Yu M, Overholtzer M, Smolen GA, Wang R, Brugge JS, Dyson NJ, Haber DA (2009) YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat Cell Biol 11(12):1444–1450PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Staley BK, Irvine KD (2010) Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr Biol 20(17):1580–1587.  https://doi.org/10.1016/j.cub.2010.07.041 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Shaw RL, Kohlmaier A, Polesello C, Veelken C, Edgar BA, Tapon N (2010) The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137(24):4147–4158.  https://doi.org/10.1242/dev.052506 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Karpowicz P, Perez J, Perrimon N (2010) The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 137(24):4135–4145.  https://doi.org/10.1242/dev.060483 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C, Jafar-Nejad H, Halder G (2006) The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8(1):27–36PubMedCrossRefGoogle Scholar
  38. 38.
    Genevet A, Wehr MC, Brain R, Thompson BJ, Tapon N (2010) Kibra is a regulator of the salvador/warts/hippo signaling network. Dev Cell 18(2):300–308.  https://doi.org/10.1016/j.devcel.2009.12.011 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Cho E, Feng Y, Rauskolb C, Maitra S, Fehon R, Irvine KD (2006) Delineation of a Fat tumor suppressor pathway. Nat Genet 38(10):1142–1150PubMedCrossRefGoogle Scholar
  40. 40.
    Genevet A, Polesello C, Blight K, Robertson F, Collinson LM, Pichaud F, Tapon N (2009) The Hippo pathway regulates apical-domain size independently of its growth-control function. J Cell Sci 122(Pt 14):2360–2370.  https://doi.org/10.1242/jcs.041806 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lai D, Ho KC, Hao Y, Yang X (2011) Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 71(7):2728–2738.  https://doi.org/10.1158/0008-5472.CAN-10-2711 PubMedCrossRefGoogle Scholar
  42. 42.
    Guo X, Zhao Y, Yan H, Yang Y, Shen S, Dai X, Ji X, Ji F, Gong XG, Li L (2017) Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev 31(3):247–259PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Moroishi T, Park HW, Qin B, Chen Q, Meng Z, Plouffe SW, Taniguchi K, Yu FX, Karin M, Pan D (2015) A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes Dev 29(12):1271–1284PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Dai X, Liu H, Shen S, Guo X, Yan H, Ji X, Li L, Huang J, Feng XH, Zhao B (2017) YAP activates the Hippo pathway in a negative feedback loop. Cell Res 25(10):1175CrossRefGoogle Scholar
  45. 45.
    Thompson BJ, Cohen SM (2006) The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126(4):767–774PubMedCrossRefGoogle Scholar
  46. 46.
    Nolo R, Morrison CM, Tao C, Zhang X, Halder G (2006) The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol 16(19):1895–1904.  https://doi.org/10.1016/j.cub.2006.08.057 PubMedCrossRefGoogle Scholar
  47. 47.
    Shen S, Guo X, Yan H, Lu Y, Ji X, Li L, Liang T, Zhou D, Feng XH, Zhao JC, Yu J, Gong XG, Zhang L, Zhao B (2015) A miR-130a-YAP positive feedback loop promotes organ size and tumorigenesis. Cell Res 25(9):997–1012.  https://doi.org/10.1038/cr.2015.98 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H, Mahadevan N, Fitamant J, Bardeesy N, Camargo FD, Guan KL (2012) YAP mediates crosstalk between the Hippo and PI3K-TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol 14(12):1322PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ma J, Huang K, Ma Y, Zhou M, Fan S (2017) The TAZ-miR-224-SMAD4 axis promotes tumorigenesis in osteosarcoma. Cell Death Dis 8(1):e2539PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Tamm C, Bower N, Anneren C (2011) Regulation of mouse embryonic stem cell self-renewal by a Yes-YAP-TEAD2 signaling pathway downstream of LIF. J Cell Sci 124(Pt 7):1136–1144.  https://doi.org/10.1242/jcs.075796 PubMedCrossRefGoogle Scholar
  51. 51.
    Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, Chinnaiyan A, Israel MA, Goldstein LS, Abujarour R, Ding S, Guan KL (2010) The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 24(11):1106–1118.  https://doi.org/10.1101/gad.1903310 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Zhang H, Pasolli HA, Fuchs E (2011) Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc Natl Acad Sci U S A 108(6):2270–2275.  https://doi.org/10.1073/pnas.1019603108 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Schutte U, Bisht S, Heukamp LC, Kebschull M, Florin A, Haarmann J, Hoffmann P, Bendas G, Buettner R, Brossart P, Feldmann G (2014) Hippo signaling mediates proliferation, invasiveness, and metastatic potential of clear cell renal cell carcinoma. Transl Oncol 7(2):309–321.  https://doi.org/10.1016/j.tranon.2014.02.005 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zhang Y, Xia H, Ge X, Chen Q, Yuan D, Qi C, Leng W, Liang C, Tang Q, Feng B (2014) CD44 acts through RhoA to regulate YAP signaling. Cell Signal 26(11):2504–2513PubMedCrossRefGoogle Scholar
  55. 55.
    Wang Z, Wu Y, Wang H, Zhang Y, Mei L, Fang X, Zhang X, Zhang F, Chen H, Liu Y (2014) Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc Natl Acad Sci U S A 111(1):E89PubMedCrossRefGoogle Scholar
  56. 56.
    Xu MZ, Chan SW, Liu AM, Wong KF, Fan ST, Chen J, Poon RT, Zender L, Lowe SW, Hong W (2011) AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene 30(10):1229–1240PubMedCrossRefGoogle Scholar
  57. 57.
    Xie Q, Chen J, Feng H, Peng S, Adams U, Bai Y, Huang L, Li J, Huang J, Meng S (2013) YAP/TEAD-mediated transcription controls cellular senescence. Cancer Res 73(12):3615–3624PubMedCrossRefGoogle Scholar
  58. 58.
    Ralston A, Cox BJ, Nishioka N, Sasaki H, Chea E, Rugg-Gunn P, Guo G, Robson P, Draper JS, Rossant J (2010) Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137(3):395PubMedCrossRefGoogle Scholar
  59. 59.
    Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, Nakao K, Sasaki H (2008) Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125(3–4):270–283PubMedCrossRefGoogle Scholar
  60. 60.
    Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16(3):398–410PubMedCrossRefGoogle Scholar
  61. 61.
    Milewski RC, Chi NC, Li J, Brown C, Lu MM, Epstein JA (2004) Identification of minimal enhancer elements sufficient for Pax3 expression in neural crest and implication of Tead2 as a regulator of Pax3. Development 131(4):829PubMedCrossRefGoogle Scholar
  62. 62.
    Gee ST, Milgram SL, Kramer KL, Conlon FL, Moody SA (2011) Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone. PLoS One 6(6):e20309PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Song S, Ajani JA, Honjo S, Maru DM, Chen Q, Scott AW, Heallen TR, Xiao L, Hofstetter WL, Weston B (2014) Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties. Cancer Res 74(15):4170–4182PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Gao Y, Zhang W, Han X, Li F, Wang X, Wang R, Fang Z, Tong X, Yao S, Li F (2015) YAP inhibits squamous transdifferentiation of Lkb1-deficient lung adenocarcinoma through ZEB2-dependent DNp63 repression. Nat Commun 5(1):4629CrossRefGoogle Scholar
  65. 65.
    Yang Y, Del Re DP, Nakano N, Sciarretta S, Zhai P, Park J, Sayed D, Shirakabe A, Matsushima S, Park Y (2015) miR-206 mediates YAP-induced cardiac hypertrophy and survival. Circ Res 117(10):891PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zhang H, Gise AV, Liu Q, Hu T, Tian X, He L, Pu W, Huang X, He L, Cai CL (2014) Yap1 is required for endothelial to mesenchymal transition of the atrioventricular cushion. J Biol Chem 289(27):18681PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hiemer SE, Szymaniak AD, Varelas X (2014) The transcriptional regulators TAZ and YAP direct transforming growth factor β-induced tumorigenic phenotypes in breast cancer cells. J Biol Chem 289(19):13461–13474PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Haskins JW, Nguyen DX, Stern DF (2014) Neuregulin 1-activated ERBB4 interacts with YAP to induce Hippo pathway target genes and promote cell migration. Sci Signal 7(355):ra116PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zaidi SK, Sullivan AJ, Medina R, Ito Y, van Wijnen AJ, Stein JL, Lian JB, Stein GS (2004) Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBO J 23(4):790–799PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Basu S, Totty NF, Irwin MS, Sudol M, Downward J (2003) Akt Phosphorylates the Yes-Associated Protein, YAP, to Induce Interaction with 14-3-3 and Attenuation of p73-Mediated Apoptosis. Mol Cell 11(1):11CrossRefGoogle Scholar
  71. 71.
    Lapi E, Di AS, Donzelli S, Gal H, Domany E, Rechavi G, Pandolfi PP, Givol D, Strano S, Lu X (2008) PML, YAP, and p73 are components of a proapoptotic autoregulatory feedback loop. Mol Cell 32(6):803CrossRefGoogle Scholar
  72. 72.
    Murakami M, Nakagawa M, Olson EN, Nakagawa O (2005) A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc Natl Acad Sci U S A 102(50):18034–18039PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang UniversityHangzhouChina

Personalised recommendations