Advertisement

Methodological Approach for the Evaluation of FOXO as a Positive Regulator of Antioxidant Genes

  • María Monsalve
  • Ignacio Prieto
  • Andreza Fabro de Bem
  • Yolanda Olmos
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1890)

Abstract

All four FOXO isoforms have been shown to respond to changes in the cellular redox status of the cell, and regulate the expression of target genes that in turn can modulate the cellular oxidative status. However, the mechanisms involved are still controversial. It is clear though that redox regulation of FOXO factors occurs at different levels. The proteins themselves are redox-sensitive and their capacity to bind their target sites seems to be at least partially dependent on their oxidative status. Importantly, several of the cofactors that are known to regulate FOXO transcriptional activity are also sensitive to changes in the cellular redox status, in particular the deacetylase SirT1 is activated in response to reduced levels of reducing equivalents (increased NAD+/NADH+ ratio) and the coactivator PGC-1α is induced in response to increased cellular oxidative stress. Furthermore, nuclear localization of FOXO factors is also regulated by proteins that, like AKT, are themselves regulated directly or indirectly by the cellular levels of reactive oxygen and nitrogen species. In this technical review, we aim to update the current status of our knowledge of how to handle redox-regulated FOXO factor research in order to better understand FOXO biology.

Key words

FOXO Vectors Activity Cell culture Pro-survival Metabolism Stress response 

Notes

Acknowledgments

This work was supported by grants from the Spanish “Ministerio de Economía Industria y Competitividad” (MINEICO) and FEDER funds [Grant numbers SAF2015-63904-R, SAF2015-71521-REDC] and from the EU H2020 framework programm Grant MSCA-ITN-2016-721236.

References

  1. 1.
    Prieto I, Monsalve M (2017) ROS homeostasis, a key determinant in liver ischemic-preconditioning. Redox Biol 12:1020–1025.  https://doi.org/10.1016/j.redox.2017.04.036 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schmidt-Strassburger U, Schips TG, Maier HJ, Kloiber K, Mannella F, Braunstein KE, Holzmann K, Ushmorov A, Liebau S, Boeckers TM, Wirth T (2012) Expression of constitutively active FoxO3 in murine forebrain leads to a loss of neural progenitors. FASEB J 26(12):4990–5001.  https://doi.org/10.1096/fj.12-208587 CrossRefPubMedGoogle Scholar
  3. 3.
    Czymai T, Viemann D, Sticht C, Molema G, Goebeler M, Schmidt M (2010) FOXO3 modulates endothelial gene expression and function by classical and alternative mechanisms. J Biol Chem 285(14):10163–10178.  https://doi.org/10.1074/jbc.M109.056663 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yu H, Fellows A, Foote K, Yang Z, Figg N, Littlewood T, Bennett M (2018) FOXO3a (forkhead transcription factor O subfamily member 3a) links vascular smooth muscle cell apoptosis, matrix breakdown, atherosclerosis, and vascular remodeling through a novel pathway involving MMP13 (matrix metalloproteinase 13). Arterioscler Thromb Vasc Biol 38(3):555–565.  https://doi.org/10.1161/ATVBAHA.117.310502 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Storz P (2011) Forkhead homeobox type O transcription factors in the responses to oxidative stress. Antioxid Redox Signal 14(4):593–605.  https://doi.org/10.1089/ars.2010.3405 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Skurk C, Maatz H, Kim HS, Yang J, Abid MR, Aird WC, Walsh K (2004) The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. J Biol Chem 279(2):1513–1525.  https://doi.org/10.1074/jbc.M304736200 CrossRefPubMedGoogle Scholar
  7. 7.
    Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868CrossRefGoogle Scholar
  8. 8.
    He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95(5):2509–2514CrossRefGoogle Scholar
  9. 9.
    Olmos Y, Valle I, Borniquel S, Tierrez A, Soria E, Lamas S, Monsalve M (2009) Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genes. J Biol Chem 284(21):14476–14484.  https://doi.org/10.1074/jbc.M807397200 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Borniquel S, Garcia-Quintans N, Valle I, Olmos Y, Wild B, Martinez-Granero F, Soria E, Lamas S, Monsalve M (2010) Inactivation of Foxo3a and subsequent downregulation of PGC-1 alpha mediate nitric oxide-induced endothelial cell migration. Mol Cell Biol 30(16):4035–4044.  https://doi.org/10.1128/MCB.00175-10 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Olmos Y, Sanchez-Gomez FJ, Wild B, Garcia-Quintans N, Cabezudo S, Lamas S, Monsalve M (2013) SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1alpha complex. Antioxid Redox Signal 19(13):1507–1521.  https://doi.org/10.1089/ars.2012.4713 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Papanicolaou KN, Izumiya Y, Walsh K (2008) Forkhead transcription factors and cardiovascular biology. Circ Res 102(1):16–31.  https://doi.org/10.1161/CIRCRESAHA.107.164186 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Aguer C, Gambarotta D, Mailloux RJ, Moffat C, Dent R, McPherson R, Harper ME (2011) Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS One 6(12):e28536.  https://doi.org/10.1371/journal.pone.0028536 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lages YM, Nascimento JM, Lemos GA, Galina A, Castilho LR, Rehen SK (2015) Low oxygen alters mitochondrial function and response to oxidative stress in human neural progenitor cells. Peer J 3:e1486.  https://doi.org/10.7717/peerj.1486 CrossRefPubMedGoogle Scholar
  15. 15.
    Tiede LM, Cook EA, Morsey B, Fox HS (2011) Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins. Cell Death Dis 2:e246.  https://doi.org/10.1038/cddis.2011.128 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • María Monsalve
    • 1
  • Ignacio Prieto
    • 1
  • Andreza Fabro de Bem
    • 2
    • 3
  • Yolanda Olmos
    • 4
    • 5
  1. 1.Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM)MadridSpain
  2. 2.Center of Biological Sciences (CCB)Federal University of Santa Catarina (UFSC)FlorianópolisBrazil
  3. 3.Institute of Biological SciencesUniversity of BrasiliaBrasiliaBrazil
  4. 4.School of Cancer and Pharmaceutical SciencesKing’s College LondonLondonUK
  5. 5.The Francis Crick InstituteLondonUK

Personalised recommendations