Advertisement

Hydra as Model to Determine the Role of FOXO in Longevity

  • Thomas C. G. Bosch
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1890)

Abstract

In non-senescent Hydra, continuously high activity of transcription factor FOXO contributes to continuous stem cell proliferation. Here, we describe how genetic manipulation of Hydra polyps using embryo-microinjection allows uncovering the role of FOXO in coordinating both stem cell proliferation and antimicrobial peptide0073 , effector molecules of the innate immune system, and regulators of the microbiome.

Key words

Hydra Stem cells Aging Microbiome FOXO Embryo microinjection Reporter gene constructs Antimicrobial peptides (AMPs) 

Notes

Acknowledgment

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) (CRC1182 “Origin and Function of Metaorganisms,” DFG grant BO 848/17-1, and grants from the DFG Cluster of Excellence program “Inflammation at Interfaces”). The author gratefully appreciates support from the Canadian Institute for Advanced Research (CIFAR).

References

  1. 1.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217CrossRefGoogle Scholar
  2. 2.
    Dato S, Rose G, Crocco P, Monti D, Garagnani P, Franceschi C, Passarino G (2017) The genetics of human longevity: an intricacy of genes, environment, culture and microbiome. Mech Ageing Dev 165(Pt B):147–155CrossRefGoogle Scholar
  3. 3.
    Jones OR, Scheuerlein A, Salguero-Gómez R, Camarda CG, Schaible R, Casper BB, Dahlgren JP, Ehrlén J, García MB, Menges ES et al (2014) Diversity of ageing across the tree of life. Nature 505:169–173CrossRefGoogle Scholar
  4. 4.
    Bosch TCG (2009) Hydra and the evolution of stem cells. BioEssays 31:478–486CrossRefGoogle Scholar
  5. 5.
    Hemmrich G, Khalturin K, Boehm AM, Puchert M, Anton-Erxleben F, Wittlieb J, Klostermeier UC, Rosenstiel P, Oberg HH, Domazet-Lošo T et al (2012) Molecular signatures of the three stem cell lineages in hydra and the emergence of stem cell function at the base of multicellularity. Mol Biol Evol 29:3267–3280CrossRefGoogle Scholar
  6. 6.
    Boehm A-M, Khalturin K, Anton-Erxleben F, Hemmrich G, Klostermeier UC, Lopez-Quintero JA, Oberg H-H, Puchert M, Rosenstiel P, Wittlieb J et al (2012) FoxO is a critical regulator of stem cell maintenance in immortal Hydra. Proc Natl Acad Sci U S A 109:19697–19702CrossRefGoogle Scholar
  7. 7.
    Franzenburg S, Walter J, Künzel S, Wang J, Baines JF, Bosch TCG, Fraune S (2013) Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc Natl Acad Sci U S A 110:E3730–E3738CrossRefGoogle Scholar
  8. 8.
    Fraune S, Augustin R, Anton-Erxleben F, Wittlieb J, Gelhaus C, Klimovich VB, Samoilovich MP, Bosch TCG (2010) In an early branching metazoan, bacterial colonization of the embryo is controlled by maternal antimicrobial peptides. Proc Natl Acad Sci U S A 107:18067–18072CrossRefGoogle Scholar
  9. 9.
    Mortzfeld BM, Bosch TCG (2017) Eco-Aging: stem cells and microbes are controlled by aging antagonist FoxO. Curr Opin Microbiol 38:181–187CrossRefGoogle Scholar
  10. 10.
    Mortzfeld BM, Taubenheim J, Fraune S, Klimovich AV, Bosch TCG (2018) Stem cell transcription factor FoxO controls microbiome resilience in Hydra. Front Microbiol 9:629CrossRefGoogle Scholar
  11. 11.
    Lenhoff HM, Brown RD (1970) Mass culture of Hydra: an improved method and its application to other aquatic invertebrates. Lab Anim 4:139–154CrossRefGoogle Scholar
  12. 12.
    Wittlieb J, Khalturin K, Lohmann JU, Anton-Erxleben F, Bosch TCG (2006) Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc Natl Acad Sci U S A 103:6208–6211CrossRefGoogle Scholar
  13. 13.
    Franzenburg S, Walter J, Künzel S, Wang J, Baines JF, Bosch TCG et al (2013) Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc Natl Acad Sci 110:E3730–E3738CrossRefGoogle Scholar
  14. 14.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  15. 15.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefGoogle Scholar
  16. 16.
    Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefGoogle Scholar
  17. 17.
    Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314CrossRefGoogle Scholar
  18. 18.
    David CN (1973) A quantitative method for maceration of hydra tissue. Dev Genes Evol 171:259–268Google Scholar
  19. 19.
    Krebs S, Fischaleck M, Blum H (2009) A simple and loss-free method to remove TRIzol contaminations from minute RNA samples. Anal Biochem 387:136–138CrossRefGoogle Scholar
  20. 20.
    Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864CrossRefGoogle Scholar
  21. 21.
    Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10CrossRefGoogle Scholar
  22. 22.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359CrossRefGoogle Scholar
  23. 23.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550CrossRefGoogle Scholar
  24. 24.
    Franzenburg S, Fraune S, Künzel S, Baines JF, Domazet-Lošo T, Bosch TCG (2012) MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proc Natl Acad Sci 109:19374–19379CrossRefGoogle Scholar
  25. 25.
    Rausch P, Basic M, Batra A, Bischoff SC, Blaut M, Clavel T et al (2016) Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. Int J Med Microbiol 306:343–355CrossRefGoogle Scholar
  26. 26.
    Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G et al (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504CrossRefGoogle Scholar
  27. 27.
    Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL et al (2013) The long-term stability of the human gut microbiota. Science 341.  https://doi.org/10.1126/science.1237439 CrossRefGoogle Scholar
  28. 28.
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60CrossRefGoogle Scholar
  29. 29.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Zoological InstituteKiel UniversityKielGermany

Personalised recommendations