In Silico Target Prediction for Small Molecules

  • Ryan Byrne
  • Gisbert SchneiderEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1888)


Drugs modulate disease states through their actions on targets in the body. Determining these targets aids the focused development of new treatments, and helps to better characterize those already employed. One means of accomplishing this is through the deployment of in silico methodologies, harnessing computational analytical and predictive power to produce educated hypotheses for experimental verification. Here, we provide an overview of the current state of the art, describe some of the well-established methods in detail, and reflect on how they, and emerging technologies promoting the incorporation of complex and heterogeneous data-sets, can be employed to improve our understanding of (poly)pharmacology.

Key words

Chemoinformatics Computer-assisted drug design Machine-learning Network pharmacology Polypharmacology 



This research was supported by the European Union Framework Programme for Research and Innovation (Horizon 2020, Marie Skłodowska-Curie ITN grant number 675555 ‘AEGIS’), and the OPO-Foundation Zurich.


  1. 1.
    Berman HM (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Piovesan D, Luigi Martelli P, Fariselli P et al (2011) BAR-PLUS: the bologna annotation resource plus for functional and structural annotation of protein sequences. Nucleic Acids Res 39:197–202CrossRefGoogle Scholar
  3. 3.
    Villoutreix BO, Lagorce D, Labbé CM et al (2013) One hundred thousand mouse clicks down the road: Selected online resources supporting drug discovery collected over a decade. Drug Discov Today 18:1081–1089CrossRefPubMedGoogle Scholar
  4. 4.
    Kamburov A, Wierling C, Lehrach H, Herwig R (2009) ConsensusPathDB–a database for integrating human functional interaction networks. Nucleic Acids Res 37:623–628CrossRefGoogle Scholar
  5. 5.
    Ogata H, Goto S, Sato K et al (1999) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tym JE, Mitsopoulos C, Coker EA et al (2016) canSAR: An updated cancer research and drug discovery knowledgebase. Nucleic Acids Res 44:938–943CrossRefGoogle Scholar
  7. 7.
    Chen X, Ji ZL, Chen YZ (2002) TTD: therapeutic target database. Nucleic Acids Res 30:412–415CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Loging W, Rodriguez-Esteban R, Hill J et al (2011) Cheminformatic/bioinformatic analysis of large corporate databases: Application to drug repurposing. Drug Discov Today Ther Strateg 8:109–116CrossRefGoogle Scholar
  9. 9.
    Bickle M (2010) The beautiful cell: High-content screening in drug discovery. Anal Bioanal Chem 398:219–226CrossRefPubMedGoogle Scholar
  10. 10.
    Roth BL, Sheffler DJ, Kroeze WK (2004) Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3:353–359CrossRefPubMedGoogle Scholar
  11. 11.
    Chaudhari R, Tan Z, Zhang S (2017) Overview of drug polypharmacology and multitargeted molecular design. In: Davis A, Edge C (eds) In silico drug discovery tools, Comprehensive medicinal chemistry III, vol 2. Elsevier, Amsterdam, pp 259–275Google Scholar
  12. 12.
    Hu Y, Bajorath J (2013) Compound promiscuity: What can we learn from current data? Drug Discov Today 18:644–650CrossRefPubMedGoogle Scholar
  13. 13.
    Frantz S (2005) Drug discovery: playing dirty. Nature 437:942–943CrossRefPubMedGoogle Scholar
  14. 14.
    Mencher SK, Wang LG (2005) Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC Clin Pharmacol 5:3CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Keiser MJ, Irwin JJ, Shoichet BK (2010) The chemical basis of pharmacology. Biochemistry 49:10267–10276CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730CrossRefPubMedGoogle Scholar
  17. 17.
    Russ AP, Lampel S (2005) The druggable genome: An update. Drug Discov Today 10:1607–1610CrossRefPubMedGoogle Scholar
  18. 18.
    Bunnage ME (2011) Getting pharmaceutical R&D back on target. Nat Chem Biol 7:335–339CrossRefPubMedGoogle Scholar
  19. 19.
    Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996CrossRefPubMedGoogle Scholar
  20. 20.
    Wishart DS (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:668–672CrossRefGoogle Scholar
  21. 21.
    Santos R, Ursu O, Gaulton A et al (2016) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16:19–34CrossRefPubMedGoogle Scholar
  22. 22.
    Von Eichborn J, Murgueitio MS, Dunkel M et al (2011) PROMISCUOUS: A database for network-based drug-repositioning. Nucleic Acids Res 39:1060–1066CrossRefGoogle Scholar
  23. 23.
    Yildirim MA, Goh K-I, Cusick ME et al (2007) Drug-target network. Nat Biotechnol 25:1119–1126CrossRefPubMedGoogle Scholar
  24. 24.
    Jalencas X, Mestres J (2013) On the origins of drug polypharmacology. Med Chem Commun 4:80–87CrossRefGoogle Scholar
  25. 25.
    Lounkine E, Keiser MJ, Whitebread S et al (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature 486:361–367CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Imming P, Sinning C, Meyer A (2006) Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 5:821–834CrossRefPubMedGoogle Scholar
  27. 27.
    Bunnage ME, Gilbert AM, Jones LH, Hett EC (2015) Know your target, know your molecule. Nat Chem Biol 11:368–372CrossRefPubMedGoogle Scholar
  28. 28.
    Jordan AM, Waddell ID, Ogilvie DJ (2015) Rethinking “academic” drug discovery: The Manchester Institute perspective. Drug Discov Today 20:525–535CrossRefPubMedGoogle Scholar
  29. 29.
    Rask-Andersen M, Almén MS, Schiöth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Duan Q, Reid SP, Clark NR et al (2016) L1000CDS2: LINCS L1000 characteristic direction signatures search engine. NPJ Syst Biol Appl 2:1–12CrossRefGoogle Scholar
  31. 31.
    Humbeck L, Koch O (2017) What can we learn from bioactivity data? Chemoinformatics tools and applications in chemical biology research. ACS Chem Biol 12:23–35CrossRefPubMedGoogle Scholar
  32. 32.
    Koutsoukas A, Simms B, Kirchmair J et al (2011) From in silico target prediction to multi-target drug design: Current databases, methods and applications. J Proteome 74:2554–2574CrossRefGoogle Scholar
  33. 33.
    Jenkins JL, Bender A, Davies JW (2006) In silico target fishing: Predicting biological targets from chemical structure. Drug Discov Today Technol 3:413–421CrossRefGoogle Scholar
  34. 34.
    Peón A, Dang CC, Ballester PJ (2016) How reliable are ligand-centric methods for target fishing? Front Chem 4:15CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nettles JH, Jenkins JL, Bender A et al (2006) Bridging chemical and biological space: “Target fishing” using 2D and 3D molecular descriptors. J Med Chem 49:6802–6810CrossRefPubMedGoogle Scholar
  36. 36.
    Lavecchia A, Cerchia C (2015) In silico methods to address polypharmacology: Current status, applications and future perspectives. Drug Discov Today 21:288–298CrossRefPubMedGoogle Scholar
  37. 37.
    Menziani MC, Montorsi M, De Benedetti PG, Karelson M (1999) Relevance of theoretical molecular descriptors in quantitative structure-activity relationship analysis of alpha1-adrenergic receptor antagonists. Bioorg Med Chem 7:2437–2451CrossRefPubMedGoogle Scholar
  38. 38.
    Verma J, Khedkar V, Coutinho E (2010) 3D-QSAR in drug design–a review. Curr Top Med Chem 10:95–115CrossRefPubMedGoogle Scholar
  39. 39.
    Brogi S, Papazafiri P, Roussis V, Tafi A (2013) 3D-QSAR using pharmacophore-based alignment and virtual screening for discovery of novel MCF-7 cell line inhibitors. Eur J Med Chem 67:344–351CrossRefPubMedGoogle Scholar
  40. 40.
    Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA (1998) IUPAC recommendations: glossary of terms used in medicinal chemistry. Pure Appl Chem 70:1129–1143CrossRefGoogle Scholar
  41. 41.
    Gfeller D, Michielin O, Zoete V (2013) Shaping the interaction landscape of bioactive molecules. Bioinformatics 29:3073–3079CrossRefPubMedGoogle Scholar
  42. 42.
    Schuffenhauer A, Floersheim P, Acklin P, Jacoby E (2003) Similarity metrics for ligands reflecting the similarity of the target proteins. J Chem Inf Comput Sci 43:391–405CrossRefPubMedGoogle Scholar
  43. 43.
    Bender A, Jenkins JL, Scheiber J et al (2009) How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J Chem Inf Model 49:108–119CrossRefPubMedGoogle Scholar
  44. 44.
    Willett P (2000) Chemoinformatics–similarity and diversity in chemical libraries. Curr Opin Biotechnol 11:85–88CrossRefPubMedGoogle Scholar
  45. 45.
    Pahikkala T, Airola A, Pietilä S et al (2015) Toward more realistic drug-target interaction predictions. Brief Bioinform 16:325–337CrossRefPubMedGoogle Scholar
  46. 46.
    Daylight Information Systems (2008) Daylight theory: fingerprints. Accessed 8 Jul 2017Google Scholar
  47. 47.
    Bajusz D, Rácz A, Héberger K (2015) Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Cheminform 7:1–13CrossRefGoogle Scholar
  48. 48.
    Baldi P, Nasr R (2010) When is chemical similarity significant? The statistical distribution of chemical similarity scores and its extreme values. J Chem Inf Model 50:1205–1222CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Arif SM, Holliday JD, Willett P (2009) Analysis and use of fragment-occurrence data in similarity-based virtual screening. J Comput Aided Mol Des 23:655–668CrossRefPubMedGoogle Scholar
  50. 50.
    Arif SM, Holliday JD, Willett P (2016) The use of weighted 2D fingerprints in similarity-based virtual screening. Adv Math Chem Appl Revis Ed 1:92–112Google Scholar
  51. 51.
    Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983–996CrossRefGoogle Scholar
  52. 52.
    Keiser MJ, Roth BL, Armbruster BN et al (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197–206CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc 7:48–48CrossRefGoogle Scholar
  54. 54.
    Bento AP, Gaulton A, Hersey A et al (2014) The ChEMBL bioactivity database: An update. Nucleic Acids Res 42:D1083–D1090CrossRefPubMedGoogle Scholar
  55. 55.
    Olah M, Mracec M, Ostopovici L et al (2005) WOMBAT: world of molecular bioactivity. In: Oprea TI (ed) Chemoinformatics in drug discovery. Wiley-VCH Verlag GmbH & Co. KGaA, Weinham, pp 221–239CrossRefGoogle Scholar
  56. 56.
    Symyx MDL Technologies, Dassault Systèmes BIOVIA (2009) MDL drug data report. Accessed 6 Jul 2017Google Scholar
  57. 57.
    Inpharmatica Ltd. (2005) StARLITe. Accessed 8 Aug 2017Google Scholar
  58. 58.
    Gfeller D, Grosdidier A, Wirth M et al (2014) SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res 42:32–38CrossRefGoogle Scholar
  59. 59.
    Armstrong MS, Finn PW, Morris GM, Richards WG (2011) Improving the accuracy of ultrafast ligand-based screening: Incorporating lipophilicity into ElectroShape as an extra dimension. J Comput Aided Mol Des 25:785–790CrossRefPubMedGoogle Scholar
  60. 60.
    Kramer C, Kalliokoski T, Gedeck P, Vulpetti A (2012) The experimental uncertainty of heterogeneous public K i data. J Med Chem 55:5165–5173CrossRefPubMedGoogle Scholar
  61. 61.
    Reker D, Rodrigues T, Schneider P, Schneider G (2014) Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci U S A 111:4067–4072CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Schneider N, Giller S (1999) Scaffold-hopping by topological pharmacophore search: A contribution to virtual screening. Angew Chem Int Ed Engl 38:2894–2896CrossRefPubMedGoogle Scholar
  63. 63.
    Reutlinger M, Koch CP, Reker D et al (2013) Chemically advanced template search (CATS) for scaffold-hopping and prospective target prediction for “orphan” molecules. Mol Inf 32:133–138CrossRefGoogle Scholar
  64. 64.
    Molecular Operating Environment (MOE), Chemical Computing Group, Montreal, Canada, 2011Google Scholar
  65. 65.
    Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69CrossRefGoogle Scholar
  66. 66.
    Schneider P, Tanrikulu Y, Schneider G (2009) Self-organising maps in drug discovery: Compound library design, scaffold-hopping, repurposing. Curr Med Chem 16:258–266CrossRefPubMedGoogle Scholar
  67. 67.
    Schneider G, Tanrikulu Y, Schneider P (2009) Self-organizing molecular fingerprints: A ligand-based view on drug-like chemical space and off-target prediction. Future Med Chem 1:213–218CrossRefPubMedGoogle Scholar
  68. 68.
    Schneider P, Schneider G (2003) Collection of bioactive reference compounds for focused library design. QSAR Comb Sci 22:713–718CrossRefGoogle Scholar
  69. 69.
    Nickel J, Gohlke BO, Erehman J et al (2014) SuperPred: Update on drug classification and target prediction. Nucleic Acids Res 42:W26–W31CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754CrossRefPubMedGoogle Scholar
  71. 71.
    Günther S, Kuhn M, Dunkel M et al (2008) SuperTarget and matador: resources for exploring drug-target relationships. Nucleic Acids Res 36:919–922CrossRefGoogle Scholar
  72. 72.
    Chen X, Liu M, Gilson MK (2001) BindingDB: a web-accessible molecular recognition database. Comb Chem High Throughput Screen 4:719–725CrossRefPubMedGoogle Scholar
  73. 73.
    Gilson MK, Liu T, Baitaluk M et al (2016) BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44:D1045–D1053CrossRefPubMedGoogle Scholar
  74. 74.
    Awale M, Reymond JL (2017) The polypharmacology browser: a web-based multi-fingerprint target prediction tool using ChEMBL bioactivity data. J Cheminform 9:1CrossRefGoogle Scholar
  75. 75.
    Liu X, Vogt I, Haque T, Campillos M (2013) HitPick: A web server for hit identification and target prediction of chemical screenings. Bioinformatics 29:1910–1912CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Mussa HY, Mitchell JBO, Glen RC (2013) Full “laplacianised” posterior naive Bayesian algorithm. J Cheminform 5:37CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Kuhn M, Szklarczyk D, Franceschini A et al (2012) STITCH 3: Zooming in on protein-chemical interactions. Nucleic Acids Res 40:D876–D880CrossRefPubMedGoogle Scholar
  78. 78.
    Szklarczyk D, Santos A, Von Mering C et al (2016) STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res 44:D380–D384CrossRefPubMedGoogle Scholar
  79. 79.
    Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: Prediction of activity spectra for biologically active substances. Bioinformatics 16:747–748CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Poroikov VV, Filimonov DA, Ihlenfeldt WD et al (2003) PASS biological activity spectrum predictions in the enhanced open NCI Database Browser. J Chem Inf Comput Sci 43:228–236CrossRefPubMedGoogle Scholar
  81. 81.
    Filimonov DA, Poroikov VV (1996) PASS: Computerized prediction of biological activity spectra for chemical substances. In: Bioactive compound design: possibilities for industrial use. BIOS Scientific Publishers, Oxford, pp 47–56Google Scholar
  82. 82.
    Filimonov D, Poroikov V, Borodina Y, Gloriozova T (1999) Chemical similarity assessment through multilevel neighborhoods of atoms: Definition and comparison with the other descriptors. J Chem Inf Comput Sci 39:666–670CrossRefGoogle Scholar
  83. 83.
    Wang Z, Liang L, Yin Z, Lin J (2016) Improving chemical similarity ensemble approach in target prediction. J Cheminform 8:20CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297Google Scholar
  85. 85.
    Nadarajah S (2003) Extreme value theory, models and simulation. In: Shanbhag D, Rao C (eds) Stochastic processes: modelling and simulation, Handbook of Statistics, vol 21. Elsevier, Amsterdam, pp 607–691CrossRefGoogle Scholar
  86. 86.
    Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Schneider P, Stutz K, Kasper L et al (2011) Target profile prediction and practical evaluation of a biginelli-type dihydropyrimidine compound library. Pharmaceuticals 4(9):1236–1247CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    Morgan HL (1965) The generation of a unique machine description for chemical structures–A technique developed at chemical abstracts service. J Chem Doc 5:107–113CrossRefGoogle Scholar
  89. 89.
    Avidon VV, Pomerantsev IA, Golender VE, Rozenblit AB (1982) Structure-activity relationship oriented languages for chemical structure representation. J Chem Inf Comput Sci 22:207–214CrossRefGoogle Scholar
  90. 90.
    Nigsch F, Bender A, Jenkins JL, Mitchell JBO (2008) Ligand-target prediction using winnow and naive bayesian algorithms and the implications of overall performance statistics. J Chem Inf Model 48:2313–2325CrossRefPubMedGoogle Scholar
  91. 91.
    Nidhi, Glick M, Davies JW, Jenkins JL (2006) Prediction of biological targets for compounds using multiple-category bayesian models trained on chemogenomics databases. J Chem Inf Model 46:1124–1133CrossRefPubMedGoogle Scholar
  92. 92.
    Drakakis G, Koutsoukas A, Brewerton S et al (2015) Comparing global and local likelihood score thresholds in multiclass Laplacian-modified naive Bayes protein target prediction. Comb Chem High Throughput Screen 18:323–330CrossRefPubMedGoogle Scholar
  93. 93.
    Koutsoukas A, Lowe R, Kalantarmotamedi Y et al (2013) In silico target predictions: Defining a benchmarking data set and comparison of performance of the multiclass Naïve Bayes and Parzen-Rosenblatt Window. J Chem Inf Model 53:1957–1966CrossRefPubMedGoogle Scholar
  94. 94.
    Nobeli I, Favia AD, Thornton JM (2009) Protein promiscuity and its implications for biotechnology. Nat Biotechnol 27:157–167CrossRefPubMedGoogle Scholar
  95. 95.
    Blencowe BJ (2006) Alternative splicing: New insights from global analyses. Cell 126:37–47CrossRefPubMedGoogle Scholar
  96. 96.
    Pan Q, Shai O, Lee LJ et al (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415CrossRefPubMedGoogle Scholar
  97. 97.
    McCarthy JJ, Hilfiker R (2000) The use of single-nucleotide polymorphism maps in pharmacogenomics. Nat Biotechnol 18:505–508CrossRefPubMedGoogle Scholar
  98. 98.
    Roden DM, George AL Jr (2002) The genetic basis of variability in drug responses. Nat Rev Drug Discov 1:37–44CrossRefPubMedGoogle Scholar
  99. 99.
    Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12:683–691CrossRefPubMedGoogle Scholar
  100. 100.
    Prabakaran S, Lippens G, Steen H, Gunawardena J (2012) Post-translational modification: Nature’s escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip Rev Syst Biol Med 4:565–583CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Bedford L, Lowe J, Dick LR et al (2011) Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 10:29–46CrossRefPubMedGoogle Scholar
  102. 102.
    Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG (2007) Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov 6:541–555CrossRefPubMedGoogle Scholar
  103. 103.
    Vogel C, Bashton M, Kerrison ND et al (2004) Structure, function and evolution of multidomain proteins. Curr Opin Struct Biol 14:208–216CrossRefPubMedGoogle Scholar
  104. 104.
    Bashton M, Chothia C (2007) The generation of new protein functions by the combination of domains. Structure 15:85–99CrossRefPubMedGoogle Scholar
  105. 105.
    Song N, Joseph JM, Davis GB, Durand D (2008) Sequence similarity network reveals common ancestry of multidomain proteins. PLoS Comput Biol 4:e1000063CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Day R, Beck DAC, Armen RS (2003) A consensus view of fold space: Combining SCOP, CATH, and the Dali Domain Dictionary. Protein Sci 12:2150–2160CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Cuff AL, Sillitoe I, Lewis T et al (2011) Extending CATH: increasing coverage of the protein structure universe and linking structure with function. Nucleic Acids Res 39:D420–D426CrossRefPubMedGoogle Scholar
  108. 108.
    Hammes GG, Chang Y-C, Oas TG (2009) Conformational selection or induced fit: A flux description of reaction mechanism. Proc Natl Acad Sci U S A 106:13737–13741CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Csermely P, Palotai R, Nussinov R (2010) Induced fit, conformational selection and independent dynamic segments: An extended view of binding events. Trends Biochem Sci 35:539–546CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Fischer E (1894) Einfluss der Konfiguration auf die Wirkung der Enzyme. Berichte der Dtsch Chem Gesellschaft 27:2985–2993CrossRefGoogle Scholar
  111. 111.
    Koshland DE (1960) The active site and enzyme action. Adv Enzymol Relat Areas Mol Biol 22:45–97Google Scholar
  112. 112.
    Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci U S A 44:98–104CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: A plausible model. J Mol Biol 12:88–118CrossRefPubMedGoogle Scholar
  114. 114.
    Motlagh HN, Wrabl JO, Li J, Hilser VJ (2014) The ensemble nature of allostery. Nature 508:331–339CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Vega S, Abian O, Velazquez-Campoy A (2016) On the link between conformational changes, ligand binding and heat capacity. Biochim Biophys Acta 1860:868–878CrossRefPubMedGoogle Scholar
  116. 116.
    Shanmugasundaram V, Zhang L, Kayastha S et al (2016) Monitoring the progression of structure-activity relationship information during lead optimization. J Med Chem 59:4235–4244CrossRefPubMedGoogle Scholar
  117. 117.
    Grünberg R, Leckner J, Nilges M (2004) Complementarity of structure ensembles in protein-protein binding. Structure 12:2125–2136CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Vogt AD, Di Cera E (2013) Conformational selection is a dominant mechanism of ligand binding. Biochemistry 52:5723–5729CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Vogt AD, Di Cera E (2012) Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry 51:5894–5902CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Changeux JP, Edelstein S (2011) Conformational selection or induced-fit? 50 years of debate resolved. F1000 Biol Rep 3:19CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Lange OF, Lakomek NA, Farès C et al (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475CrossRefPubMedGoogle Scholar
  122. 122.
    Kar G, Keskin O, Gursoy A, Nussinov R (2010) Allostery and population shift in drug discovery. Curr Opin Pharmacol 10:715–722CrossRefPubMedGoogle Scholar
  123. 123.
    Michel D (2016) Conformational selection or induced fit? New insights from old principles. Biochimie 128–129:48–54CrossRefPubMedGoogle Scholar
  124. 124.
    Galburt EA, Tomko EJ (2017) Conformational selection and induced fit as a useful framework for molecular motor mechanisms. Biophys Chem 223:11–16CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Ekroos M, Sjogren T (2006) Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci U S A 103:13682–13687CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59:4035–4061CrossRefPubMedGoogle Scholar
  127. 127.
    Feixas F, Lindert S, Sinko W, McCammon JA (2014) Exploring the role of receptor flexibility in structure-based drug discovery. Biophys Chem 186:31–45CrossRefPubMedGoogle Scholar
  128. 128.
    Buonfiglio R, Recanatini M, Masetti M (2015) Protein flexibility in drug discovery: From theory to computation. ChemMedChem 10:1141–1148CrossRefPubMedGoogle Scholar
  129. 129.
    Teague SJ (2003) Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2:527–541CrossRefPubMedGoogle Scholar
  130. 130.
    Lahti JL, Tang GW, Capriotti E et al (2012) Bioinformatics and variability in drug response: a protein structural perspective. J R Soc Interface 9:1409–1437CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Xie L, Xie L, Bourne PE (2009) A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery. Bioinformatics 25:305–312CrossRefGoogle Scholar
  132. 132.
    Kahraman A, Morris RJ, Laskowski RA, Thornton JM (2007) Shape variation in protein bindign pockets and their ligands. J Mol Biol 368:283–301CrossRefPubMedGoogle Scholar
  133. 133.
    Kellenberger E, Schalon C, Rognan D (2008) How to measure the similarity between protein-ligand binding sites? Curr Comput Aided Drug Des 4:209–220CrossRefGoogle Scholar
  134. 134.
    Pérot S, Sperandio O, Miteva MA et al (2010) Druggable pockets and binding site centric chemical space: A paradigm shift in drug discovery. Drug Discov Today 15:656–667CrossRefPubMedGoogle Scholar
  135. 135.
    Schmitt S, Kuhn D, Klebe G (2002) A new method to detect related function among proteins independent of sequence and fold homology. J Mol Biol 323:387–406CrossRefPubMedGoogle Scholar
  136. 136.
    Bron C, Kerbosch J (1973) Algorithm 457: Finding all cliques of an undirected graph. Commun ACM 16:575–577CrossRefGoogle Scholar
  137. 137.
    Jambon M, Imberty A, Deléage G, Geourjon C (2003) A new bioinformatic approach to detect common 3D sites in protein structures. Proteins 52:137–145CrossRefPubMedGoogle Scholar
  138. 138.
    Jambon M, Andrieu O, Combet C et al (2005) The SuMo server: 3D search for protein functional sites. Bioinformatics 21:3929–3930CrossRefPubMedGoogle Scholar
  139. 139.
    Chartier M, Najmanovich R (2015) Detection of binding site molecular interaction field similarities. J Chem Inf Model 55:1600–1615CrossRefPubMedGoogle Scholar
  140. 140.
    Chartier M, Adriansen E, Najmanovich R (2015) IsoMIF Finder: Online detection of binding site molecular interaction field similarities. Bioinformatics 32:621–623CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Yeturu K, Chandra N (2008) PocketMatch: a new algorithm to compare binding sites in protein structures. BMC Bioinformatics 9:543CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Hoffmann B, Zaslavskiy M, Vert J-P, Stoven V (2010) A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction. BMC Bioinformatics 11:99CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Wang X, Pan C, Gong J et al (2016) Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs. J Chem Inf Model 56:1175–1183CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Liu X, Ouyang S, Yu B et al (2010) PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 38:W609–W614CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Wang X, Shen Y, Wang S et al (2017) PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 45(W1):W356–W360.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Yuan Y, Pei J, Lai L (2013) Binding site detection and druggability prediction of protein targets for structure-based drug design. Curr Pharm Des 19:2326–2333CrossRefPubMedGoogle Scholar
  148. 148.
    Chen J, Ma X, Yuan Y et al (2014) Protein-protein interface analysis and hot spots identification for chemical ligand design. Curr Pharm Des 20:1192–1200CrossRefPubMedGoogle Scholar
  149. 149.
    Warren GL, Andrews CW, Capelli A-M et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931CrossRefPubMedGoogle Scholar
  150. 150.
    Bourne PE, Beran B, Bi C et al (2011) The evolution of the RCSB protein data bank website. Wiley Interdiscip Rev Comput Mol Sci 1:782–789CrossRefGoogle Scholar
  151. 151.
    Zardecki C, Dutta S, Goodsell DS et al (2016) RCSB protein data bank: A resource for chemical, biochemical, and structural explorations of large and small biomolecules. J Chem Educ 93:569–575CrossRefGoogle Scholar
  152. 152.
    Ellingson SR, Smith JC, Baudry J (2013) VinaMPI: Facilitating multiple receptor high-throughput virtual docking on high-performance computers. J Comput Chem 34:2212–2221CrossRefPubMedGoogle Scholar
  153. 153.
    Chen HM, Liu BF, Huang HL et al (2007) SODOCK: Swarm optimization for highly flexible protein-ligand docking. J Comput Chem 28:612–623CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Liu Y, Zhao L, Li W et al (2013) FIPSDock: A new molecular docking technique driven by fully informed swarm optimization algorithm. J Comput Chem 34:67–75CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Chen YZ, Zhi DG (2001) Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins Struct Funct Genet 43:217–226CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Li H, Gao Z, Kang L et al (2006) TarFisDock: A web server for identifying drug targets with docking approach. Nucleic Acids Res 34:W219–W224CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Gao Z, Li H, Zhang H et al (2008) PDTD: A web-accessible protein database for drug target identification. BMC Bioinformatics 9:104CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Lang PT, Brozell SR, Mukherjee S et al (2009) DOCK 6: Combining techniques to model RNA-small molecule complexes. RNA 15:1219–1230CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Wang JC, Chu PY, Chen CM, Lin JH (2012) idTarget: A web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucleic Acids Res 40:W393–W399CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Chang DTH, Oyang YJ, Lin JH (2005) MEDock: A web server for efficient prediction of ligand binding sites based on a novel optimization algorithm. Nucleic Acids Res 33:W233–W238CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Kellenberger E, Muller P, Schalon C et al (2006) sc-PDB: An annotated database of druggable binding sites from the Protein Data Bank. J Chem Inf Model 46:717–727CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Luo H, Chen J, Shi L et al (2011) DRAR-CPI: A server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. Nucleic Acids Res 39:W492–W498CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Smith RD, Hu L, Falkner JA et al (2006) Exploring protein-ligand recognition with Binding MOAD. J Mol Graph Model 24:414–425CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Wassenaar TA, van Dijk M, Loureiro-Ferreira N et al (2012) WeNMR: Structural biology on the grid. J Grid Comput 10:743–767CrossRefGoogle Scholar
  167. 167.
    Van Dijk M, Wassenaar TA, Bonvin AMJJ (2012) A flexible, grid-enabled web portal for GROMACS molecular dynamics simulations. J Chem Theory Comput 8:3463–3472CrossRefPubMedGoogle Scholar
  168. 168.
    Hospital A, Andrio P, Fenollosa C et al (2012) MDWeb and MDMoby: An integrated web-based platform for molecular dynamics simulations. Bioinformatics 28:1278–1279CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Chen Z, Rappert S, Sun J, Zeng AP (2011) Integrating molecular dynamics and co-evolutionary analysis for reliable target prediction and deregulation of the allosteric inhibition of aspartokinase for amino acid production. J Biotechnol 154:248–254CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Páll S, Abraham MJ, Kutzner C et al (2015) Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In: Markidis S, Laure E (eds) Lecture notes in computer science, vol 8759. Springer, Cham, pp 3–27Google Scholar
  171. 171.
    Bowers KJ, Sacerdoti FD, Salmon JK et al (2006) Molecular dynamics–Scalable algorithms for molecular dynamics simulations on commodity clusters. In: SC ‘06: Proceedings of the 2006 ACM/IEEE conference on supercomputing. ACM New York, Tampa, pp 84–96Google Scholar
  172. 172.
    Mestres J, Gregori-Puigjané E, Valverde S, Solé RV (2009) The topology of drug–target interaction networks: implicit dependence on drug properties and target families. Mol BioSyst 5:1051CrossRefPubMedGoogle Scholar
  173. 173.
    Luo Q, Pagel P, Vilne B, Frishman D (2011) DIMA 3.0: Domain interaction map. Nucleic Acids Res 39:D724–D729CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Weisel M, Kriegl JM, Schneider G (2010) Architectural repertoire of ligand-binding pockets on protein surfaces. ChemBioChem 11:556–563CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Prud’hommeaux E, Seaborne A (2008) SPARQL query language for RDF. W3C Recomm 2009:1–106Google Scholar
  176. 176.
    Harris S, Seaborne A (2014) SPARQL 1.1 query language. W3C Recomm 2009:1–106Google Scholar
  177. 177.
    Chen B, Ding Y, Wild DJ (2012) Assessing drug target association using semantic linked data. PLoS Comput Biol 8:e1002574CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: Tool for the unification of biology. Nat Genet 25:25–29CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Blake JA, Christie KR, Dolan ME et al (2015) Gene ontology consortium: Going forward. Nucleic Acids Res 43:D1049–D1056CrossRefGoogle Scholar
  180. 180.
    Degtyarenko K, De Matos P, Ennis M et al (2008) ChEBI: A database and ontology for chemical entities of biological interest. Nucleic Acids Res 36:D344–D350CrossRefPubMedGoogle Scholar
  181. 181.
    de Matos P, Alcántara R, Dekker A et al (2009) Chemical entities of biological interest: An update. Nucleic Acids Res 38:D249–D254CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Law V, Knox C, Djoumbou Y et al (2014) DrugBank 4.0: Shedding new light on drug metabolism. Nucleic Acids Res 42:D1091–D1097CrossRefPubMedGoogle Scholar
  183. 183.
    Chen B, Dong X, Jiao D et al (2010) Chem2Bio2RDF: A semantic framework for linking and data mining chemogenomic and systems chemical biology data. BMC Bioinformatics 11:255CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Chen B, Ding Y, Wild DJ (2012) Improving integrative searching of systems chemical biology data using semantic annotation. J Cheminform 4:6CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271CrossRefGoogle Scholar
  186. 186.
    Kong X, Cao B, Yu PS (2013) Multi-label classification by mining label and instance correlations from heterogeneous information networks categories and subject descriptors. In: Dhillon I et al (eds) Proceedings of the 19th ACM SIGKDD International conference on knowledge discovery and data mining. ACM Press, New York, pp 614–622CrossRefGoogle Scholar
  187. 187.
    Wang W, Yang S, Zhang X, Li J (2014) Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 30:2923–2930CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Fakhraei S, Huang B, Raschid L, Getoor L (2014) Network-based drug-target interaction prediction with probabilistic soft-logic. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol 11. IEEE Computer society press, Los Alamitos, pp 775–787Google Scholar
  189. 189.
    Klipp E, Wade RC, Kummer U (2010) Biochemical network-based drug-target prediction. Curr Opin Biotechnol 21:511–516CrossRefPubMedGoogle Scholar
  190. 190.
    Campillos M, Kuhn M, Gavin A-C et al (2008) Drug target identification using side-effect similarity. Science 321:263–266CrossRefPubMedGoogle Scholar
  191. 191.
    Yamanishi Y, Kotera M, Kanehisa M, Goto S (2010) Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26:i246–i254CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Takarabe M, Kotera M, Nishimura Y et al (2012) Drug target prediction using adverse event report systems: A pharmacogenomic approach. Bioinformatics 28:i611–i618CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Yamanishi Y, Kotera M, Moriya Y et al (2014) DINIES: Drug-target interaction network inference engine based on supervised analysis. Nucleic Acids Res 42:W39–W45CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Zhang X, Li L, Ng MK, Zhang S (2017) Drug-target interaction prediction by integrating multiview network data. Comput Biol Chem 69:185–190CrossRefPubMedGoogle Scholar
  195. 195.
    Kanehisa M, Goto S, Furumichi M et al (2009) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355–D360CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Pawson AJ, Sharman JL, Benson HE et al (2014) The IUPHAR/BPS Guide to PHARMACOLOGY: An expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Res 42:D1098–D1106CrossRefPubMedGoogle Scholar
  197. 197.
    Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using NetworkX. In: Varoquax G et al. (eds) SciPy 2008: Proceedings of the 7th python in science conference, Pasadena, 2008Google Scholar
  198. 198.
    Van Der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: A structure for efficient numerical computation. Comput Sci Eng 13:22–30CrossRefGoogle Scholar
  199. 199.
    Tosco P, Stiefl N, Landrum G (2014) Bringing the MMFF force field to the RDKit: Implementation and validation. J Cheminform 6:37CrossRefPubMedCentralPubMedGoogle Scholar
  200. 200.
    Landrum G (2016) The RDKit Documentation–The RDKit 2016.09.1 documentation. Accessed 18 Aug 2017Google Scholar
  201. 201.
    Python Software Foundation (2017) The Python Language Reference–Python 2.7.13 documentation. Accessed 18 Aug 2017Google Scholar
  202. 202.
    Bastian M, Heymann S, Jacomy M et al (2009) Gephi: an open source software for exploring and manipulating networks. In: Third international AAAI conference on weblogs and social media, San Jose, 17–20 May 2009Google Scholar
  203. 203.
    Jacomy M, Venturini T, Heymann S, Bastian M (2014) ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One 9:e98679CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Boutet E, Lieberherr D, Tognolli M et al (2007) UniProtKB/Swiss-Prot. Methods Mol Biol 406:89–112PubMedGoogle Scholar
  205. 205.
    Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39:2887–2893CrossRefPubMedGoogle Scholar
  206. 206.
    Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:808–815CrossRefGoogle Scholar
  207. 207.
    Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: Exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Flicek P, Amode MR, Barrell D et al (2014) Ensembl 2014. Nucleic Acids Res 42:D749–D755CrossRefPubMedGoogle Scholar
  209. 209.
    Lundstrom K (2006) The ultimate approach for rational drug design. Struct Genomics 34:205–212Google Scholar
  210. 210.
    Kaldor SW, Kalish VJ, Davies JF et al (1997) Viracept (nelfinavir mesylate, AG1343): A potent, orally bioavailable inhibitor of HIV-1 protease. J Med Chem 40:3979–3985CrossRefPubMedGoogle Scholar
  211. 211.
    Xie L, Bourne PE (2007) A robust and efficient algorithm for the shape description of protein structures and its application in predicting ligand binding sites. BMC Bioinformatics 8:S9CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Xie L, Evangelidis T, Xie L, Bourne PE (2011) Drug discovery using chemical systems biology: Weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. PLoS Comput Biol 7:e1002037CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Csermely P, Korcsmáros T, Kiss HJM et al (2013) Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review. Pharmacol Ther 138:333–408CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Mei H, Xia T, Feng G et al (2012) Opportunities in systems biology to discover mechanisms and repurpose drugs for CNS diseases. Drug Discov Today 17:1208–1216CrossRefPubMedGoogle Scholar
  215. 215.
    Kell DB, Goodacre R (2014) Metabolomics and systems pharmacology: Why and how to model the human metabolic network for drug discovery. Drug Discov Today 19:171–182CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Kunkel EJ (2004) Systems biology in drug discovery. Nat Biotechnol 22:1253–1259CrossRefPubMedGoogle Scholar
  217. 217.
    Chautard E, Thierry-Mieg N, Ricard-Blum S (2009) Interaction networks: From protein functions to drug discovery. A review. Pathol Biol 57:324–333CrossRefPubMedGoogle Scholar
  218. 218.
    Raj A, Rifkin SA, Andersen E, van Oudenaarden A (2010) Variability in gene expression underlies incomplete penetrance. Nature 463:913–918CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Susaki EA, Ukai H, Ueda HR (2017) Next-generation mammalian genetics toward organism-level systems biology. Syst Biol Appl 3:15CrossRefGoogle Scholar
  220. 220.
    Jerby L, Ruppin E (2012) Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling. Clin Cancer Res 18:5572–5584CrossRefPubMedGoogle Scholar
  221. 221.
    Folger O, Jerby L, Frezza C et al (2014) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501CrossRefGoogle Scholar
  222. 222.
    Azuaje FJ, Zhang L, Devaux Y, Wagner DR (2011) Drug-target network in myocardial infarction reveals multiple side effects of unrelated drugs. Sci Rep 1:52CrossRefPubMedPubMedCentralGoogle Scholar
  223. 223.
    Chelliah V, Juty N, Ajmera I et al (2015) BioModels: Ten-year anniversary. Nucleic Acids Res 43:D542–D548CrossRefPubMedGoogle Scholar
  224. 224.
    Raman K, Chandra N (2009) Flux balance analysis of biological systems: Applications and challenges. Brief Bioinform 10:435–449CrossRefPubMedGoogle Scholar
  225. 225.
    Fang X, Wallqvist A, Reifman J (2009) A systems biology framework for modeling metabolic enzyme inhibition of Mycobacterium tuberculosis. BMC Syst Biol 3:92CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    Martinez V, Navarro C, Cano C et al (2015) DrugNet: Network-based drug-disease prioritization by integrating heterogeneous data. Artif Intell Med 63:41–49CrossRefPubMedGoogle Scholar
  227. 227.
    Zhang Y, Thiele I, Weekes D et al (2009) Three-dimensional structural view of the central metabolic network of Thermotoga maritima. Science 325:1544–1549CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Kessler RM, Ansari MS, de Paulis T et al (1991) High affinity dopamine D2 receptor radioligands. 1. Regional rat brain distribution of iodinated benzamides. J Nucl Med 32:1593–1600PubMedGoogle Scholar
  229. 229.
    Hopkins AL, Mason JS, Overington JP (2006) Can we rationally design promiscuous drugs? Curr Opin Struct Biol 16:127–136CrossRefPubMedGoogle Scholar
  230. 230.
    Denessiouk KA, Johnson MS (2000) When fold is not important: A common structural framework for adenine and AMP binding in 12 unrelated protein families. Proteins Struct Funct Genet 38:310–326CrossRefPubMedGoogle Scholar
  231. 231.
    Lalande L, Bourguignon L, Maire P, Goutelle S (2016) Mathematical modeling and systems pharmacology of tuberculosis: Isoniazid as a case study. J Theor Biol 399:43–52CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Raman K, Chandra N (2008) Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance. BMC Microbiol 8:234.CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Rokem JS, Lantz AE, Nielsen J (2007) Systems biology of antibiotic production by microorganisms. Nat Prod Rep 24:1262–1287CrossRefPubMedGoogle Scholar
  234. 234.
    Kinnings SL, Xie L, Fung KH et al (2010) The Mycobacterium tuberculosis drugome and its polypharmacological implications. PLoS Comput Biol 6:e1000976CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Wist AD, Berger SI, Iyengar R (2009) Systems pharmacology and genome medicine: a future perspective. Genome Med 1:11CrossRefPubMedPubMedCentralGoogle Scholar
  236. 236.
    Jin G, Zhao H, Zhou X, Wong STC (2011) An enhanced Petri-Net model to predict synergistic effects of pairwise drug combinations from gene microarray data. Bioinformatics 27:310–316CrossRefGoogle Scholar
  237. 237.
    Winter GE, Rix U, Carlson SM et al (2012) Systems-pharmacology dissection of a drug synergy in imatinib-resistant CML. Nat Chem Biol 8:905–912CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Jin G, Fu C, Zhao H et al (2012) A novel method of transcriptional response analysis to facilitate drug repositioning for cancer therapy. Cancer Res 72:33–44CrossRefPubMedGoogle Scholar
  239. 239.
    Ryall KA, Tan AC (2015) Systems biology approaches for advancing the discovery of effective drug combinations. J Cheminform 7:7CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Li P, Chen J, Wang J et al (2014) Systems pharmacology strategies for drug discovery and combination with applications to cardiovascular diseases. J Ethnopharmacol 151:93–107CrossRefPubMedGoogle Scholar
  241. 241.
    Kell DB (2015) The transporter-mediated cellular uptake of pharmaceutical drugs is based on their metabolite-likeness and not on their bulk biophysical properties: Towards a systems pharmacology. Perspect Sci 6:66–83CrossRefGoogle Scholar
  242. 242.
    Mitchell JBO (2014) Machine learning methods in chemoinformatics. Wiley Interdiscip Rev Comput Mol Sci 4:468–481CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Azencott CA, Ksikes A, Swamidass SJ et al (2007) One- to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties. J Chem Inf Model 47:965–974CrossRefPubMedGoogle Scholar
  244. 244.
    Nascimento ACA, Prudêncio RBC, Costa IG (2016) A multiple kernel learning algorithm for drug-target interaction prediction. BMC Bioinformatics 17:46CrossRefPubMedPubMedCentralGoogle Scholar
  245. 245.
    Lima AN, Philot EA, Trossini GHG et al (2016) Use of machine learning approaches for novel drug discovery. Expert Opin Drug Discov 11:225–239CrossRefPubMedGoogle Scholar
  246. 246.
    Ekins S, de Siqueira-Neto JL, McCall L-I et al (2015) Machine learning models and pathway genome data base for Trypanosoma cruzi drug discovery. PLoS Negl Trop Dis 9:e0003878CrossRefPubMedPubMedCentralGoogle Scholar
  247. 247.
    Williams K, Bilsland E, Sparkes A et al (2015) Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases. J R Soc Interface 12:1289CrossRefGoogle Scholar
  248. 248.
    Gasteiger J (2003) Physicochemical effects in the representation of molecular structures for drug designing. Mini Rev Med Chem 3:789–796CrossRefPubMedGoogle Scholar
  249. 249.
    Sawada R, Kotera M, Yamanishi Y (2014) Benchmarking a wide range of chemical descriptors for drug-target interaction prediction using a chemogenomic approach. Mol Inf 33:719–731Google Scholar
  250. 250.
    Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313:504–507CrossRefPubMedGoogle Scholar
  251. 251.
    LeCun Y, Yoshua B, Geoffrey H (2015) Deep learning. Nature 521:436–444CrossRefPubMedGoogle Scholar
  252. 252.
    Gawehn E, Hiss JA, Schneider G (2016) Deep learning in drug discovery. Mol Inf 35:3–14CrossRefGoogle Scholar
  253. 253.
    Unterthiner T, Ceulemans H, Steijaert M (2014) Multi-task deep networks for drug target prediction. In: Ghahramani Z et al (eds) NIPS 2014: Proceedings of the neural information processing systems foundation meeting, Montréal, 2014Google Scholar
  254. 254.
    Lusci A, Pollastri G, Baldi P (2013) Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 53:1563–1575CrossRefPubMedPubMedCentralGoogle Scholar
  255. 255.
    Faber FA, Hutchison L, Huang B, et al (2017) Fast machine learning models of electronic and energetic properties consistently reach approximation errors better than DFT accuracy. arXiv:1702.05532Google Scholar
  256. 256.
    Ma J, Sheridan RP, Liaw A et al (2015) Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 55:263–274CrossRefPubMedGoogle Scholar
  257. 257.
    Goh GB, Siegel C, Vishnu A et al (2017) Chemception: A deep neural network with minimal chemistry knowledge matches the performance of expert-developed QSAR/QSPR models. arXiv:1706.06689Google Scholar
  258. 258.
    Mayr A, Klambauer G, Unterthiner T, Hochreiter S (2016) DeepTox: Toxicity prediction using deep learning. Front Environ Sci 3:80CrossRefGoogle Scholar
  259. 259.
    Ramsundar B, Liu B, Zhenqin W et al (2017) Is multitask deep learning practical for pharma? J Chem Inf Model.Google Scholar
  260. 260.
    Wang Q, Feng Y, Huang J et al (2017) A novel framework for the identification of drug target proteins: Combining stacked auto-encoders with a biased support vector machine. PLoS One 12:e0176486CrossRefPubMedPubMedCentralGoogle Scholar
  261. 261.
    Unterthiner T, Mayr A, Klambauer G et al (2014) In: Ghahramani Z et al (eds) NIPS 2014: Proceedings of the neural information processing systems foundation meeting, Montréal, 2014Google Scholar
  262. 262.
    Ralaivola L, Swamidass SJ, Saigo H, Baldi P (2005) Graph kernels for chemical informatics. Neural Netw 18:1093–1110CrossRefPubMedGoogle Scholar
  263. 263.
    Azencott CA, Borgwardt K (2014) Data mining in bioinformatics–Graph mining in chemoinformatics. Accessed 6 Jul 2017Google Scholar
  264. 264.
    Gilmer J, Schoenholz SS, Riley PF et al (2017) Neural message passing for quantum chemistry. arXiv:1704.01212Google Scholar
  265. 265.
    Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. Adv Neural Inform Process Syst 29:3844–3852Google Scholar
  266. 266.
    Niepert M, Ahmed M, Kutzkov K (2016) Learning convolutional neural networks for graphs. J Mach Learn Res 48:2014–2023Google Scholar
  267. 267.
    Altae-Tran H, Ramsundar B, Pappu AS, Pande V (2017) Low data drug discovery with one-shot learning. ACS Cent Sci 3:283–293CrossRefPubMedPubMedCentralGoogle Scholar
  268. 268.
    Merck & Co., Inc (2012) Merck molecular activity challenge, Accessed 4 Aug 2017Google Scholar
  269. 269.
    Chen B, Sheridan RP, Hornak V, Voigt JH (2012) Comparison of random forest and Pipeline Pilot naïve Bayes in prospective QSAR predictions. J Chem Inf Model 52:792–803CrossRefPubMedGoogle Scholar
  270. 270.
    Dahl GE, Jaitly N, Salakhutdinov R (2015) Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 55:263–274CrossRefPubMedGoogle Scholar
  271. 271.
    Dahl GE, Jaitly N (2012) Post discussing authors’ methodology and success in Merck Kaggle competition. Accessed 4 Aug 2017Google Scholar
  272. 272.
    Markoff J (2012) New York Times coverage of the Merck competition. Accessed 4 Aug 2017Google Scholar
  273. 273.
    Kearnes S, McCloskey K, Berndl M et al (2016) Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des 30:595–608CrossRefPubMedPubMedCentralGoogle Scholar
  274. 274.
    Scarselli F, Gori M, Tsoi AC et al (2009) The graph neural network model. IEEE Trans Neural Netw 20:61–80CrossRefPubMedPubMedCentralGoogle Scholar
  275. 275.
    Szegedy C, Liu W, Jia Y et al (2015) Going deeper with convolutions. In: Conference on computer vision and pattern recognition (CVPR), Boston, MA, 7–12 Jun 2015Google Scholar
  276. 276.
    Karpathy A, Li FF (2015) Deep visual-semantic alignments for generating image descriptions. IEEE Trans Pattern Anal Mach Intell 39:664–676CrossRefGoogle Scholar
  277. 277.
    Silla CN, Freitas AA (2011) A survey of hierarchical classification across different application domains. Data Min Knowl Discov 22:31–72CrossRefGoogle Scholar
  278. 278.
    Ragoza M, Hochuli J, Idrobo E et al (2017) Protein-ligand scoring with convolutional neural networks. J Chem Inf Model 57:942–957CrossRefPubMedPubMedCentralGoogle Scholar
  279. 279.
    Wang Y, Zeng J (2013) Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics 29:i126–i134CrossRefPubMedPubMedCentralGoogle Scholar
  280. 280.
    Laggner C, Kokel D, Setola V et al (2012) Chemical informatics and target identification in a zebrafish phenotypic screen. Nat Chem Biol 8:144–146CrossRefGoogle Scholar
  281. 281.
    Liggi S, Drakakis G, Koutsoukas A et al (2014) Extending in silico mechanism-of-action analysis by annotating targets with pathways: application to cellular cytotoxicity readouts. Future Med Chem 6:2029–2056CrossRefPubMedPubMedCentralGoogle Scholar
  282. 282.
    Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4:649–663CrossRefPubMedPubMedCentralGoogle Scholar
  283. 283.
    Klenner A, Hartenfeller M, Schneider P, Schneider G (2010) “Fuzziness” in pharmacophore-based virtual screening and de novo design. Drug Discov Today Technol 7:e237–e244CrossRefGoogle Scholar
  284. 284.
    Hartenfeller M, Schneider G (2011) Enabling future drug discovery by de novo design. Wiley Interdiscip Rev Comput Mol Sci 1:742–759CrossRefGoogle Scholar
  285. 285.
    Schneider P, Schneider G (2016) De novo design at the edge of chaos. J Med Chem 59:4077–4086CrossRefPubMedGoogle Scholar
  286. 286.
    Koes DR, Camacho CJ (2011) Pharmer: Efficient and exact pharmacophore search. J Chem Inf Model 51:1307–1314CrossRefPubMedPubMedCentralGoogle Scholar
  287. 287.
    Koes DR, Camacho CJ (2012) ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Res 40:W409–W414CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH)ZurichSwitzerland

Personalised recommendations