Advertisement

Predicting Drug Interactions From Chemogenomics Using INDIGO

  • Sriram Chandrasekaran
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1888)

Abstract

Designing effective antibiotic combination regimens is critical for countering drug resistance in pathogens. Yet the large combinatorial search-space makes the identification of effective combinations a significant challenge. There is a great need for computational approaches that can rapidly prioritize potential combination regimens based on the antagonistic and synergistic interactions among the constituent antibiotics. This protocol outlines the steps to predict antibiotic interactions from chemogenomics data using the INDIGO algorithm. INDIGO predicted novel drug–drug interaction outcomes quantitatively with high accuracy based on experimental evaluation of predictions in E. coli and S. aureus, and it overcomes several limitations of existing drug-interaction prediction algorithms. The INDIGO approach also expands the applicability of chemogenomic data from model organisms to a broader set of less-studied pathogens. INDIGO can predict drug-interaction outcomes in the bacterial pathogens S. aureus and M. tuberculosis, using chemogenomics data from E. coli by quantifying the degree of conservation of the drug–gene interaction network between different species. The INDIGO approach, which is demonstrated for E. coli and S. aureus in this protocol, can be applied easily to other organisms including pathogens.

Key words

Drug synergy Antibiotics Drug resistance Drug combinations Chemogenomics Machine learning Staphylococcus aureus Mycobacterium tuberculosis 

Notes

Acknowledgment

I thank Chen Li for critical reading of the manuscript.

References

  1. 1.
    Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4(11):682–690.  https://doi.org/10.1038/nchembio.118CrossRefPubMedGoogle Scholar
  2. 2.
    Mdluli K, Kaneko T, Upton A (2015) The tuberculosis drug discovery and development pipeline and emerging drug targets. Cold Spring Harb Perspect Med 5(6).  https://doi.org/10.1101/cshperspect.a021154
  3. 3.
    Ramon-Garcia S, Ng C, Anderson H, Chao JD, Zheng X, Pfeifer T, Av-Gay Y, Roberge M, Thompson CJ (2011) Synergistic drug combinations for tuberculosis therapy identified by a novel high-throughput screen. Antimicrob Agents Chemother 55(8):3861–3869.  https://doi.org/10.1128/AAC.00474-11CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Baym M, Stone LK, Kishony R (2016) Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351(6268):aad3292.  https://doi.org/10.1126/science.aad3292CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lobritz MA, Belenky P, Porter CBM, Gutierrez A, Yang JH, Schwarz EG, Dwyer DJ, Khalil AS, Collins JJ (2015) Antibiotic efficacy is linked to bacterial cellular respiration. Proc Natl Acad Sci 112(27):8173–8180.  https://doi.org/10.1073/pnas.1509743112CrossRefPubMedGoogle Scholar
  6. 6.
    Silva A, Lee B-Y, Clemens DL, Kee T, Ding X, Ho C-M, Horwitz MA (2016) Output-driven feedback system control platform optimizes combinatorial therapy of tuberculosis using a macrophage cell culture model. Proc Natl Acad Sci 113(15):E2172–E2179CrossRefGoogle Scholar
  7. 7.
    Chandrasekaran S, Cokol-Cakmak M, Sahin N, Yilancioglu K, Kazan H, Collins JJ, Cokol M (2016) Chemogenomics and orthology-based design of antibiotic combination therapies. Mol Syst Biol 12(5):872.  https://doi.org/10.15252/msb.20156777CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M, Chaba R, Lee S, Kazmierczak KM, Lee KJ, Wong A, Shales M, Lovett S, Winkler ME, Krogan NJ, Typas A, Gross CA (2011) Phenotypic landscape of a bacterial cell. Cell 144(1):143–156.  https://doi.org/10.1016/j.cell.2010.11.052CrossRefPubMedGoogle Scholar
  9. 9.
    Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3(6):285–290PubMedGoogle Scholar
  10. 10.
    Whiteside MD, Winsor GL, Laird MR, Brinkman FS (2013) OrtholugeDB: a bacterial and archaeal orthology resource for improved comparative genomic analysis. Nucleic Acids Res 41(Database issue):D366–D376.  https://doi.org/10.1093/nar/gks1241CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations